版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1第七章静止电荷的电场§7-3静电场的高斯定理2第七章静止电荷的电场7.1物质的电结构库仑定律7.2静电场电场强度7.3静电场的高斯定理7.4静电场的环路定理电势7.5电场强度与电势梯度的关系7.6静电场中的导体7.7电容器的电容7.8静电场中的电介质7.9有电介质时的高斯定理电位移7.10静电场的能量3高斯定理证明
闭合曲面S:高斯面(1)通过包围点电荷q的同心球面的电通量都=(2)通过包围点电荷q的任意闭合面S的电通量都=(4)多个点电荷的电通量等于它们单独存在时的电通量的代数和(3)通过不包围点电荷的任意闭合面S的电通量恒为0。*4高斯定理证明1闭合曲面S:高斯面(1)通过包围点电荷q的同心球面的电通量都=与r无关!含义:不同半径的球面,其电通量都相等,即通过的电场线数相等!
5高斯定理证明2*(2)通过包围点电荷q的任意闭合面S的电通量都=通过dS2面内的电通量:其值等于dS2面内的电通量,根据立体角,也等于dS1的电通量,即=闭合曲面S:高斯面
电通量与所选取球面半径无关67高斯定理证明3(3)通过不包围点电荷的任意闭合面S的电通量恒为0。∵单个点电荷产生的电力线是辐射的直线,且连续不断。当点电荷在闭合面S之外时,从某个面元进入的电场线必然从另一个面元上穿出。显然二面元的对点电荷所张的立体角相等。因此二面元的电通量数值相等,符号相反,代数和=0。闭合曲面S:高斯面
8高斯定理证明4(4)多个点电荷的电通量等于它们单独存在时电通量的代数和dS处总场强:在法线方向的投影:dS处电通量:高斯面内电通量:闭合曲面S:高斯面
9高斯定理&电场线电场线的起点与终点电场线起自正电荷(或来自无穷远),止于负电荷(或伸向无穷远),但不会在没有电荷的地方中断。+对于电场线起点,作闭合面将其包围,因有电通量从其穿出,则根据高斯定理,其内必有正电荷存在。……闭合曲面S:高斯面
10高斯定理&电场线电场线的疏密与场强的大小电力管:由一束电场线围成的管状区域。在电力管膨胀的地方(电场线变得稀疏)场强比较弱。电力管的电通量:设电力管内没有电荷,则电通量=0。若垂直闭合曲面S:高斯面
11高斯定理思考题(1)若q1、q2在闭合曲面S内,q3在S外。1.高斯面上任一点p的场强E和哪些电荷有关?2.和哪些电荷有关?12高斯定理思考题(2)2.如S上各点E=0,能否肯定此闭合面内一定没有包围净电荷?1.如
,则S上各点E=0?不能肯定。能肯定。+----------13高斯定理思考题(3)将一正点电荷q放在一原不带电的导体旁,导体上出现感应电荷q'、-q'(如图)。请证明q'<q。S高斯定理思考题(4)
14
15高斯定理讨论(1)高斯定理和库仑定律的关系
高斯定理是由库仑定律导出的。高斯定理反映了库仑定律的平方反比关系.
如果库仑定律无平方反比关系则得不到高斯定理。实际上,人们正是利用高斯定理的一些推论,反过来用实验验证平方反比中“2”的准确程度。
目前已达到的精度是和“2”的偏离不超过2.7×10-16
。
1617高斯定理讨论(2)高斯定理和库仑定律等价?“高斯定理与库仑定律完全等价”;
“从高斯定理出发可导出库仑定律”两说法欠妥。库仑定律说明两点:电荷间的作用力有平方反比关系;电荷间的作用力是有心力。
高斯定理并未反映静电场是有心力这一特点。
实际上,不增加附加条件(如点电荷电场的方向沿径向或
具有球面对称性等条件)并不能从高斯定理推出库仑定律。在静电场范围内,库仑定律比高斯定理包含更多的信息:库仑定律将电场强度和电荷直接联系起来;高斯定理将电场通量和某一区域内的电荷联系在一起。18高斯定理讨论(3)高斯定理对静电场的描述是不完备的。
高斯定理是静电场的两个基本定理之一
(另一个是环路定理)。两个定理各自反映静电场性质的一个侧面。
二者结合,才能完整地描述静电场.没有一定的对称性就不能只靠高斯定理求场强分布高斯定理不仅适用于静电场,还适用于变化电场。静电场的高斯定理指出,通过任意闭合曲面的电通量可以不为零,它表明静电场是有源的。19叠加思路电偶极子(中线、延长线)中垂线中垂线中垂线20例题7-9求均匀带正电球壳所激发的场强。(R,q)OP解:
据高斯面定理:REOr问题:球壳内的场强?对称性:E对整个高斯面S均相等,为常量。均匀带电球壳在外部空间产生的电场,与其上电荷全部集中在球心时产生的电场一样。rS21例题7-9’求均匀带正电球体所激发的场强。(R,q)OPRrEOr解:
上题结果:
电荷密度:
22例题7-10求无限大均匀带电平面产生的场强。解:由对称性分析知:E的方向垂直板面向外;距板同远处E大小相同。取如图圆柱体为高斯面,由问题:一对电荷密度等值异号的无限大均匀带电平行平面间的场强?(-)23例题7-11求无限长均匀带电细棒的电场分布。解:设电荷体密度为λ。对称性分析:所包围的电荷:λh,根据高斯定理:Ehr24例题7-11’求无限长均匀带电圆柱面的电场分布。解:柱面外一点对称性分析:任一点(P)的场强沿径向,距中心同远处场强相同。设电荷线密度为λ
,r>R。所包围的电荷:λh
,根据高斯定理:25例题8-11’’求无限长均匀带电圆柱体的电场分布。解:柱面内一点对称性分析:圆柱内任一点的场强沿径向。距中心同远处场强相同,设电荷线密度为λ
.所包围的电荷量:柱面外一点:据高斯定理:26高斯定理的应用高斯定理的应用:(1)求电场分布;(2)分析静电场问题。求电场分布的步骤:(1)对称性分析;(2)选合适的高斯面;(3)用高斯定理计算。
27高斯定理小结高斯定理不但适用于静止电荷和静电场,也适用于运动电荷和迅速变化的电磁场。而库仑定律只适用于静电场。E是带电体系中所有电荷(无论在高斯面内或高斯面外)
产生的总场强。Σ
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版绿色环保产业园区开发建设合同3篇
- 二零二五年现代农业大棚建设与科技推广合同3篇
- 2025年度临时设施场地租用飘然而往安装合同4篇
- 二零二五年度美容院商铺租赁与美容院会员积分兑换合同3篇
- 2025年度产学研合作企业技术改造合同4篇
- 二零二五年度含贷款利率调整条款的二手房买卖合同3篇
- 2025年度艺术品代理销售合同4篇
- 二零二五年度路灯照明设施节能改造与优化合同4篇
- 二零二五年度健康养生产品试用买卖合同范本3篇
- 2025年洗浴场所广告位承包经营合作协议3篇
- 医院项目竣工验收和工程收尾阶段的管理措施专项方案
- 2024年涉密人员考试试题库保密基本知识试题附答案(考试直接用)
- 2024年桂林中考物理试卷
- DL∕T 5362-2018 水工沥青混凝土试验规程
- (正式版)JC∕T 60023-2024 石膏条板应用技术规程
- DL-T5054-2016火力发电厂汽水管道设计规范
- (权变)领导行为理论
- 2024届上海市浦东新区高三二模英语卷
- 家用电器可靠性与寿命预测研究
- 中考语文二轮复习:诗歌鉴赏系列之边塞军旅诗(知识点+方法+习题)
- 2024年智慧工地相关知识考试试题及答案
评论
0/150
提交评论