2023届山东广饶县数学九上期末质量跟踪监视模拟试题含解析_第1页
2023届山东广饶县数学九上期末质量跟踪监视模拟试题含解析_第2页
2023届山东广饶县数学九上期末质量跟踪监视模拟试题含解析_第3页
2023届山东广饶县数学九上期末质量跟踪监视模拟试题含解析_第4页
2023届山东广饶县数学九上期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.抛物线关于轴对称的抛物线的解析式为().A. B.C. D.2.下列事件是必然事件的是()A.某人体温是100℃ B.太阳从西边下山C.a2+b2=﹣1 D.购买一张彩票,中奖3.在△ABC中,∠C=90°,AC=9,sinB=,则AB=(

)A.15

B.12

C.9

D.64.反比例函数y=在每个象限内的函数值y随x的增大而增大,则m的取值范围是()A.m<0 B.m>0 C.m>﹣1 D.m<﹣15.在△ABC中,AD是BC边上的高,∠C=45°,sinB=,AD=1.则△ABC的面积为()A.1 B. C. D.26.如图,菱形的边长是4厘米,,动点以1厘米/秒的速度自点出发沿方向运动,动点以2厘米/秒的速度自点出发沿方向运动至点停止,同时点也停止运动若点,同时出发运动了秒,记的面积为厘米2,下面图象中能表示与之间的函数关系的是()A. B. C. D.7.将化成的形式为()A. B.C. D.8.若反比例函数的图象在每一个信息内的值随的增大而增大,则关于的函数的图象经过()A.第一、三象限 B.第二、四象限C.第一、三、四象限 D.第一、二、四象限9.连接对角线相等的任意四边形各边中点得到的新四边形的形状是()A.正方形 B.菱形 C.矩形 D.平行四边形10.若关于x的一元二次方程ax2+bx+6=0(a≠0)的其中一个解是x=1,则2018﹣a﹣b的值是()A.2022 B.2018 C.2017 D.202411.如图,平面直角坐标系中,⊙P经过三点A(8,0),O(0,0),B(0,6),点D是⊙P上的一动点.当点D到弦OB的距离最大时,tan∠BOD的值是()A.2 B.3 C.4 D.512.对于反比例函数,下列说法不正确的是()A.图像分布在第一、三象限 B.当时,随的增大而减小C.图像经过点 D.若点都在图像上,且,则二、填空题(每题4分,共24分)13.抛物线y=(x+2)2-2的顶点坐标是________.14.在平面直角坐标系中,与位似,位似中心为原点,点与点是对应顶点,且点A,点的坐标分别是,,那么与的相似比为__________.15.已知点A(a,2019)与点A′(﹣2020,b)是关于原点O的对称点,则a+b的值为_____.16.关于x的一元二次方程x2+4x﹣2k=0有实数根,则k的取值范围是_____.17.请你写出一个函数,使它的图象与直线无公共点,这个函数的表达式为_________.18.某毛绒玩具厂对一批毛绒玩具进行质量抽检,相关数据如下:抽取的毛绒玩具数2151111211511111115112111优等品的频数19479118446292113791846优等品的频率1.9511.9411.9111.9211.9241.9211.9191.923从这批玩具中,任意抽取的一个毛绒玩具是优等品的概率的估计值是__.(精确到三、解答题(共78分)19.(8分)某校网络学习平台开通以后,王老师在平台上创建了教育工作室和同学们交流学习.随机抽查了20天通过访问王老师工作室学习的学生人数记录,统计如下:(单位:人次)2020281520253020121330251520101020172426“希望腾飞”学习小组根据以上数据绘制出频数分布表和频数分布直方图的一部分如图:频数分布表分组频数(单位:天)10≤x<15415≤x<20320≤x<25a25≤x<30b30≤x<352合计20请根据以上信息回答下列问题:(1)在频数分布表中,a的值为,b的值为,并将频数分布直方图补充完整;(2)求这20天访问王老师工作室的访问人次的平均数.20.(8分)已知与成反比例,当时,,求与的函数表达式.21.(8分)某食品代理商向超市供货,原定供货价为元/件,超市售价为元/件.为打开市场超市决定在第一季度对产品打八折促销,第二季度再回升个百分点,为保证超市利润,代理商承诺在供货价基础上向超市返点试问平均每季度返多少个百分点,半年后超市的销售利润回到开始供货时的水平?22.(10分)已知:在平面直角坐标系中,的三个顶点的坐标分别为,,.(1)画出关于原点成中心对称的,并写出点的坐标;(2)画出将绕点按顺时针旋转所得的.23.(10分)如图,正方形的对角线、相交于点,过点作的平行线,过点作的平行线,它们相交于点.求证:四边形是正方形.24.(10分)某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.25.(12分)如图,对称轴为直线的抛物线与x轴相交于A、B两点,其中A点的坐标为(-3,0).(1)求点B的坐标;(2)已知,C为抛物线与y轴的交点.①若点P在抛物线上,且,求点P的坐标;②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.26.先化简,再求值:,其中.

参考答案一、选择题(每题4分,共48分)1、B【解析】先求出抛物线y=2(x﹣2)2﹣1关于x轴对称的顶点坐标,再根据关于x轴对称开口大小不变,开口方向相反求出a的值,即可求出答案.【详解】抛物线y=2(x﹣2)2﹣1的顶点坐标为(2,﹣1),而(2,﹣1)关于x轴对称的点的坐标为(2,1),所以所求抛物线的解析式为y=﹣2(x﹣2)2+1.故选B.【点睛】本题考查了二次函数的轴对称变换,此图形变换包括x轴对称和y轴对称两种方式.二次函数关于x轴对称的图像,其形状不变,但开口方向相反,因此a值为原来的相反数,顶点位置改变,只要根据关于x轴对称的点坐标特征求出新的顶点坐标,即可确定解析式.二次函数关于y轴对称的图像,其形状不变,开口方向也不变,因此a值不变,但是顶点位置改变,只要根据关于y轴对称的点坐标特征求出新的顶点坐标,即可确定解析式.2、B【解析】根据必然事件的特点:一定会发生的特点进行判断即可【详解】解:A、某人体温是100℃是不可能事件,本选项不符合题意;B、太阳从西边下山是必然事件,本选项符合题意;C、a2+b2=﹣1是不可能事件,本选项不符合题意;D、购买一张彩票,中奖是随机事件,本选项不符合题意.故选:B.【点睛】本题考查了必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件,不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3、A【分析】根据三角函数的定义直接求解.【详解】在Rt△ABC中,∠C=90°,AC=9,∵,∴,解得AB=1.故选A4、D【解析】∵在每个象限内的函数值y随x的增大而增大,∴m+1<0,∴m<-1.5、C【分析】先由三角形的高的定义得出∠ADB=∠ADC=90°,解Rt△ADB,得出AB=3,根据勾股定理求出BD=2,解Rt△ADC,得出DC=1,然后根据三角形的面积公式计算即可;【详解】在Rt△ABD中,∵sinB==,又∵AD=1,∴AB=3,∵BD2=AB2﹣AD2,∴BD.在Rt△ADC中,∵∠C=45°,∴CD=AD=1.∴BC=BD+DC=2+1,∴S△ABC=•BC•AD=×(2+1)×1=,故选:C.【点睛】本题考查了三角形的面积问题,掌握三角形的面积公式是解题的关键.6、D【分析】用含t的代数式表示出BP,BQ的长,根据三角形的面积公式就可以求出S,从而得到函数的解析式,进一步即可求解.【详解】解:由题意得BP=4-t,BQ=2t,∴S=×2t××(4-t)=-t2+2t,∴当x=2时,S=-×4+2×2=2.∴选项D的图形符合.故选:D.【点睛】本题主要考查了动点问题的函数图象,利用图形的关系求函数的解析式,注意数形结合是解决本题的关键.7、C【分析】本小题先将二次项的系数提出后再将括号里运用配方法配成完全平方式即可.【详解】由得:故选C【点睛】本题考查的知识点是配方法,掌握配方的方法及防止漏乘是关键.8、D【分析】通过反比例函数的性质可得出m的取值范围,然后根据一次函数的性质可确定一次函数图象经过的象限.【详解】解:∵反比例函数的图象在每一个信息内的值随的增大而增大∴∴∴∴关于的函数的图象不经过第三象限.故选:D.【点睛】本题考查的知识点是反比例函数的性质、一次函数的图象与系数的关系、一次函数的性质,掌握以上知识点是解此题的关键.9、B【分析】先根据三角形的中位线定理和平行四边形的判定定理证得此四边形为平行四边形,再判断一组邻边相等,所以根据菱形的定义可知该中点四边形是菱形.【详解】如图所示,连接AC、BD,

∵E、F、G、H分别为各边的中点,

∴HG、EF分别为△ACD与△ABC的中位线,

∴HG∥AC∥EF,,

∴四边形EFGH是平行四边形;同理可得,,∵AC=BD,

∴EH=GH,

∴四边形EFGH是菱形;

故选:B.【点睛】本题考查的是三角形中位线定理,即三角形的中位线平行于底边且等于底边的一半.解答此题的关键是根据题意画出图形,利用数形结合思想解答.10、D【分析】根据题意将x=1代入原方程并整理得出,最后进一步整体代入求值即可.【详解】∵x=1是原方程的一个解,∴把x=1代入方程,得:,即.∴,故选:D.【点睛】本题主要考查了一元二次方程的解,熟练掌握相关概念是解题关键.11、B【解析】如图,连接AB,过点P作PE⊥BO,并延长EP交⊙P于点D,求出⊙P的半径,进而结合勾股定理得出答案.【详解】解:如图,连接AB,过点P作PE⊥BO,并延长EP交⊙P于点D,此时点D到弦OB的距离最大,∵A(8,0),B(0,6),∴AO=8,BO=6,∵∠BOA=90°,∴AB==10,则⊙P的半径为5,∵PE⊥BO,∴BE=EO=3,∴PE==4,∴ED=9,∴tan∠BOD==3,故选B.【点睛】本题考查了圆周角定理以及勾股定理、解直角三角形等知识,正确作出辅助线是解题关键.12、D【分析】根据反比例函数图象的性质对各选项分析判断后即可求解.【详解】解:A、k=8>0,∴它的图象在第一、三象限,故本选项正确,不符合题意;B、k=8>0,当x>0时,y随x的增大而减小,故本选项正确,不符合题意;C、∵,∴点(-4,-2)在它的图象上,故本选项正确,不符合题意;D、点A(x1,y1)、B(x2、y2)都在反比例函数的图象上,若x1<x2<0,则y1>y2,故本选项错误,符合题意.故选D.【点睛】本题考查了反比例函数的性质,对于反比例函数,(1)k>0,反比例函数图象在一、三象限,在每一个象限内,y随x的增大而减小;(2)k<0,反比例函数图象在第二、四象限内,在每一个象限内,y随x的增大而增大.二、填空题(每题4分,共24分)13、(-2,-2)【分析】由题意直接利用顶点式的特点,即可求出抛物线的顶点坐标.【详解】解:∵y=(x+2)2-2是抛物线的顶点式,∴抛物线的顶点坐标为(-2,-2).故答案为:(-2,-2).【点睛】本题主要考查的是二次函数的性质,掌握二次函数顶点式的特征是解题的关键.14、2【分析】分别求出OA和OA1的长度即可得出答案.【详解】根据题意可得,,,所以相似比=,故答案为2.【点睛】本题考查的是位似,属于基础图形,位似图形上任意一对对应点到位似中心的距离之比等于相似比.15、1.【分析】直接利用关于原点对称点的性质得出a,b的值,进而得出答案.【详解】解:∵点A(a,2019)与点A′(﹣2020,b)是关于原点O的对称点,∴a=2020,b=﹣2019,∴a+b=1.故答案为:1.【点睛】此题主要考查了关于原点对称的点的性质,正确记忆横纵坐标的符号是解题关键.16、k≥﹣1【分析】根据判别式的意义得到△=41+8k≥0,然后解不等式即可.【详解】∵一元二次方程x1+4x﹣1k=0有实数根,∴△=41+8k≥0,解得,k≥﹣1.故答案为:k≥﹣1.【点睛】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(1)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.17、(答案不唯一)【分析】直线经过一三象限,所以只要找到一个过二、四象限的函数即可.【详解】∵直线经过一三象限,图象在二、四象限∴两个函数无公共点故答案为【点睛】本题主要考查正比例函数的图象与性质,掌握正比例函数与反比例函数的图象与性质是解题的关键.18、1.92【分析】由表格中的数据可知优等品的频率在1.92左右摆动,利用频率估计概率即可求得答案.【详解】观察可知优等品的频率在1.92左右,所以从这批玩具中,任意抽取的一个毛绒玩具是优等品的概率的估计值是1.92,故答案为:1.92.【点睛】本题考查了利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,由此可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率的近似值,随着实验次数的增多,值越来越精确.三、解答题(共78分)19、(1)7、1,直方图见解析;(2)20人次.【分析】(1)根据题目所给数据即可得出a、b的值,从而补全直方图;

(2)根据平均数的概念列式求解可得.【详解】解:(1)由题意知20≤x<25的天数a=7,25≤x<30的天数b=1,补全直方图如下:故答案为:7、1.(2)这20天访问王老师工作室的访问人次的平均数为:答:这20天访问王老师工作室的访问人次的平均数为20人次.【点睛】此题考查了频数(率)分布直方图,平均数,正确识别统计图及统计表中的数据是解本题的关键.20、【分析】根据反比例的定义,设,再将代入求出k,即可求得.【详解】由题意设,将代入得,解得,∴即.【点睛】本题考查了反比例的定义,利用代入法求解未知数,要注意的是,与的函数表达式指的是形式,如本题最后结果不可写成.21、代理商平均每个季度向超市返个百分点,半年后超市的利润回到开始供货时的水平.【分析】设代理商平均每个季度向超市返个百分点,根据题意列出方程,解方程,即可得到答案.【详解】解:设代理商平均每个季度向超市返个百分点,由题意得:,解得:(舍去).∴代理商平均每个季度向超市返个百分点,半年后超市的利润回到开始供货时的水平.【点睛】本题考查了一元二次方程的应用,解题的关键是找到题目的等量关系,列出方程.22、(1)如图所示,即为所求,见解析,点的坐标为;(2)如图所示,即为所求.见解析.【解析】分别作出三顶点关于原点的对称点,再顺次连接即可得;

分别作出点、绕点按顺时针旋转所得的对应点,再顺次连接即可得.【详解】解:(1)如图所示,即为所求,其中点的坐标为.(2)如图所示,即为所求.【点睛】此题主要考查了图形的旋转变换,正确得出对应点位置是解题关键.23、见解析【分析】根据已知条件先证明四边形OBEC是平行四边形,再证明∠BOC=90°,OC=OB即可判定四边形OBEC是正方形.【详解】∵,,∴四边形是平行四边形,∵四边形是正方形,∴,,∴,∴四边形是矩形,∵,∴四边形是正方形.【点睛】本题考查正方形的性质和判定,解题的关键是熟练掌握正方形的性质和判定.24、(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元.【分析】(1)设每个月生产成本的下降率为x,根据2月份、3月份的生产成本,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)由4月份该公司的生产成本=3月份该公司的生产成本×(1﹣下降率),即可得出结论.【详解】(1)设每个月生产成本的下降率为x,根据题意得:400(1﹣x)2=361,解得:x1=0.05=5%,x2=1.95(不合题意,舍去).答:每个月生产成本的下降率为5%;(2)361×(1﹣5%)=342.95(万元),答:预测4

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论