一次函数、一元一次方程和一元一次不等式 教案 八年级数学上册_第1页
一次函数、一元一次方程和一元一次不等式 教案 八年级数学上册_第2页
一次函数、一元一次方程和一元一次不等式 教案 八年级数学上册_第3页
一次函数、一元一次方程和一元一次不等式 教案 八年级数学上册_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

.6一次函数、一元一次方程和一元一次不等式主备人用案人授课时间第1课时课题一次函数、一元一次方程和一元一次不等式教学目标1.通过函数图像初步体会一元一次不等式与一元一次方程、一次函数的内在联系.2.了解一元一次不等式与一元一次方程、一次函数在解决问题过程中的作用和联系.重点通过具体实例,初步体会一次函数、一元一次方程和一元一次不等式的内在联系.难点了解一元一次不等式与一元一次方程、一次函数在解决问题过程中的作用和联系.知识点一、一次函数与一元一次方程解一元一次方程对应一次函数的值为0时,求相应的自变量的值,即一次函数与x轴交点的横坐标.二、一次函数与一元一次不等式解一元一次不等式对应一次函数的函数值大(小)于0时,求自变量的取值范围,即在x轴上方(或下方)的图象所对应的x取值范围.主要题型探究点一:一次函数与一元一次方程一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的方程kx+b=0的解为()A.x=-1B.x=2C.x=0D.x=3解析:∵y=kx+b经过点(2,3)、(0,1),∴eq\b\lc\{(\a\vs4\al\co1(b=1,,2k+b=3,))解得eq\b\lc\{(\a\vs4\al\co1(b=1,,k=1,))∴一次函数解析式为y=x+1.令x+1=0,解得x=-1.故选A.方法总结:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=kx+b,确定它与x轴的交点的横坐标的值.探究点二:一次函数与一元一次不等式对照图象,请回答下列问题:(1)当x取何值时,2x-5=-x+1?(2)当x取何值时,2x-5>-x+1?(3)当x取何值时,2x-5<-x+1?解析:(1)直线y=2x-5与直线y=-x+1的交点横坐标的值即为方程2x-5=-x+1的解;(2)直线y=2x-5在直线y=-x+1上方的部分对应的x的取值范围即为不等式2x-5>-x+1的解集;(3)直线y=2x-5在直线y=-x+1下方的部分对应的x的取值范围即为不等式2x-5<-x+1的解集.解:(1)由图象可知,直线y=2x-5与直线y=-x+1的交点的横坐标是2,所以当x取2时,2x-5=-x+1;(2)由图象可知,当x>2时,直线y=2x-5落在直线y=-x+1的上方,即2x-5>-x+1;(3)由图象可知,当x<2时,直线y=2x-5落在直线y=-x+1的下方,即2x-5<-x+1.方法总结:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.探究点三:运用一次函数与方程、不等式解决实际问题某销售公司推销一种产品,设x(单位:件)是推销产品的数量,y(单位:元)是付给推销员的月报酬.公司付给推销员的月报酬的两种方案如图所示,推销员可以任选一种与公司签订合同,看图解答下列问题:(1)求每种付酬方案y关于x的函数表达式;(2)当选择方案一所得报酬高于选择方案二所得报酬时,求x的取值范围.解析:(1)由图已知两点,可根据待定系数法列方程组,求出函数关系式;(2)列出方程得出两直线的相交点的坐标,即可得选择方案一所得报酬高于选择方案二所得报酬时x的取值范围.解:(1)设方案一的解析式为y=kx,把(40,1600)代入解析式,可得k=40,∴方案一y关于x的解析式为y=40x;设方案二的解析式为y=ax+b,把(40,1400)和(0,600)代入解析式,可得eq\b\lc\{(\a\vs4\al\co1(b=600,,40a+b=1400,))解得eq\b\lc\{(\a\vs4\al\co1(a=20,,b=600,))∴方案二y关于x的解析式为y=20x+600;(2)根据两直线相交可得40x=20x+600,解得x=30,故

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论