2022-2023学年四川省凉山州会东中学高考数学四模试卷含解析_第1页
2022-2023学年四川省凉山州会东中学高考数学四模试卷含解析_第2页
2022-2023学年四川省凉山州会东中学高考数学四模试卷含解析_第3页
2022-2023学年四川省凉山州会东中学高考数学四模试卷含解析_第4页
2022-2023学年四川省凉山州会东中学高考数学四模试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年高考数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知点是抛物线的对称轴与准线的交点,点为抛物线的焦点,点在抛物线上且满足,若取得最大值时,点恰好在以为焦点的椭圆上,则椭圆的离心率为()A. B. C. D.2.已知等差数列的前项和为,,,则()A.25 B.32 C.35 D.403.若圆锥轴截面面积为,母线与底面所成角为60°,则体积为()A. B. C. D.4.某人2018年的家庭总收人为元,各种用途占比如图中的折线图,年家庭总收入的各种用途占比统计如图中的条形图,已知年的就医费用比年的就医费用增加了元,则该人年的储畜费用为()A.元 B.元 C.元 D.元5.设集合,则()A. B.C. D.6.设递增的等比数列的前n项和为,已知,,则()A.9 B.27 C.81 D.7.已知,,,若,则()A. B. C. D.8.某单位去年的开支分布的折线图如图1所示,在这一年中的水、电、交通开支(单位:万元)如图2所示,则该单位去年的水费开支占总开支的百分比为()A. B. C. D.9.设,点,,,,设对一切都有不等式成立,则正整数的最小值为()A. B. C. D.10.已知双曲线C:1(a>0,b>0)的焦距为8,一条渐近线方程为,则C为()A. B.C. D.11.函数的一个零点在区间内,则实数a的取值范围是()A. B. C. D.12.若数列为等差数列,且满足,为数列的前项和,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在中,,点是边的中点,则__________,________.14.若变量x,y满足:,且满足,则参数t的取值范围为_______.15.已知实数,满足,则目标函数的最小值为__________.16.小李参加有关“学习强国”的答题活动,要从4道题中随机抽取2道作答,小李会其中的三道题,则抽到的2道题小李都会的概率为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图1,已知四边形BCDE为直角梯形,,,且,A为BE的中点将沿AD折到位置如图,连结PC,PB构成一个四棱锥.(Ⅰ)求证;(Ⅱ)若平面.①求二面角的大小;②在棱PC上存在点M,满足,使得直线AM与平面PBC所成的角为,求的值.18.(12分)设数列的前n项和满足,,,(1)证明:数列是等差数列,并求其通项公式﹔(2)设,求证:.19.(12分)设函数,,(Ⅰ)求曲线在点(1,0)处的切线方程;(Ⅱ)求函数在区间上的取值范围.20.(12分)已知等差数列和等比数列的各项均为整数,它们的前项和分别为,且,.(1)求数列,的通项公式;(2)求;(3)是否存在正整数,使得恰好是数列或中的项?若存在,求出所有满足条件的的值;若不存在,说明理由.21.(12分)如图所示的几何体中,,四边形为正方形,四边形为梯形,,,,为中点.(1)证明:;(2)求二面角的余弦值.22.(10分)如图,在四棱锥中,平面,底面是矩形,,,分别是,的中点.(Ⅰ)求证:平面;(Ⅱ)设,求三棱锥的体积.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

设,利用两点间的距离公式求出的表达式,结合基本不等式的性质求出的最大值时的点坐标,结合椭圆的定义以及椭圆的离心率公式求解即可.【详解】设,因为是抛物线的对称轴与准线的交点,点为抛物线的焦点,所以,则,当时,,当时,,当且仅当时取等号,此时,,点在以为焦点的椭圆上,,由椭圆的定义得,所以椭圆的离心率,故选B.【点睛】本题主要考查椭圆的定义及离心率,属于难题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解.2、C【解析】

设出等差数列的首项和公差,即可根据题意列出两个方程,求出通项公式,从而求得.【详解】设等差数列的首项为,公差为,则,解得,∴,即有.故选:C.【点睛】本题主要考查等差数列的通项公式的求法和应用,涉及等差数列的前项和公式的应用,属于容易题.3、D【解析】

设圆锥底面圆的半径为,由轴截面面积为可得半径,再利用圆锥体积公式计算即可.【详解】设圆锥底面圆的半径为,由已知,,解得,所以圆锥的体积.故选:D【点睛】本题考查圆锥的体积的计算,涉及到圆锥的定义,是一道容易题.4、A【解析】

根据2018年的家庭总收人为元,且就医费用占得到就医费用,再根据年的就医费用比年的就医费用增加了元,得到年的就医费用,然后由年的就医费用占总收人,得到2019年的家庭总收人再根据储畜费用占总收人求解.【详解】因为2018年的家庭总收人为元,且就医费用占所以就医费用因为年的就医费用比年的就医费用增加了元,所以年的就医费用元,而年的就医费用占总收人所以2019年的家庭总收人为而储畜费用占总收人所以储畜费用:故选:A【点睛】本题主要考查统计中的折线图和条形图的应用,还考查了建模解模的能力,属于基础题.5、B【解析】

直接进行集合的并集、交集的运算即可.【详解】解:;∴.故选:B.【点睛】本题主要考查集合描述法、列举法的定义,以及交集、并集的运算,是基础题.6、A【解析】

根据两个已知条件求出数列的公比和首项,即得的值.【详解】设等比数列的公比为q.由,得,解得或.因为.且数列递增,所以.又,解得,故.故选:A【点睛】本题主要考查等比数列的通项和求和公式,意在考查学生对这些知识的理解掌握水平.7、B【解析】

由平行求出参数,再由数量积的坐标运算计算.【详解】由,得,则,,,所以.故选:B.【点睛】本题考查向量平行的坐标表示,考查数量积的坐标运算,掌握向量数量积的坐标运算是解题关键.8、A【解析】

由折线图找出水、电、交通开支占总开支的比例,再计算出水费开支占水、电、交通开支的比例,相乘即可求出水费开支占总开支的百分比.【详解】水费开支占总开支的百分比为.故选:A【点睛】本题考查折线图与柱形图,属于基础题.9、A【解析】

先求得,再求得左边的范围,只需,利用单调性解得t的范围.【详解】由题意知sin,∴,∴,随n的增大而增大,∴,∴,即,又f(t)=在t上单增,f(2)=-1<0,f(3)=2>0,∴正整数的最小值为3.【点睛】本题考查了数列的通项及求和问题,考查了数列的单调性及不等式的解法,考查了转化思想,属于中档题.10、A【解析】

由题意求得c与的值,结合隐含条件列式求得a2,b2,则答案可求.【详解】由题意,2c=8,则c=4,又,且a2+b2=c2,解得a2=4,b2=12.∴双曲线C的方程为.故选:A.【点睛】本题考查双曲线的简单性质,属于基础题.11、C【解析】

显然函数在区间内连续,由的一个零点在区间内,则,即可求解.【详解】由题,显然函数在区间内连续,因为的一个零点在区间内,所以,即,解得,故选:C【点睛】本题考查零点存在性定理的应用,属于基础题.12、B【解析】

利用等差数列性质,若,则求出,再利用等差数列前项和公式得【详解】解:因为,由等差数列性质,若,则得,.为数列的前项和,则.故选:.【点睛】本题考查等差数列性质与等差数列前项和.(1)如果为等差数列,若,则.(2)要注意等差数列前项和公式的灵活应用,如.二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】

根据正弦定理直接求出,利用三角形的边表示向量,然后利用向量的数量积求解即可.【详解】中,,,可得因为点是边的中点,所以故答案为:;.【点睛】本题主要考查了三角形的解法,向量的数量积的应用,考查计算能力,属于中档题.14、【解析】

根据变量x,y满足:,画出可行域,由,解得直线过定点,直线绕定点旋转与可行域有交点即可,再结合图象利用斜率求解.【详解】由变量x,y满足:,画出可行域如图所示阴影部分,由,整理得,由,解得,所以直线过定点,由,解得,由,解得,要使,则与可行域有交点,当时,满足条件,当时,直线得斜率应该不小于AC,而不大于AB,即或,解得,且,综上:参数t的取值范围为.故答案为:【点睛】本题主要考查线性规划的应用,还考查了转化运算求解的能力,属于中档题.15、-1【解析】

作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.【详解】作出实数x,y满足对应的平面区域如图阴影所示;由z=x+2y﹣1,得yx,平移直线yx,由图象可知当直线yx经过点A时,直线yx的纵截距最小,此时z最小.由,得A(﹣1,﹣1),此时z的最小值为z=﹣1﹣2﹣1=﹣1,故答案为﹣1.【点睛】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法,是基础题16、【解析】

从四道题中随机抽取两道共6种情况,抽到的两道全都会的情况有3种,即可得到概率.【详解】由题:从从4道题中随机抽取2道作答,共有种,小李会其中的三道题,则抽到的2道题小李都会的情况共有种,所以其概率为.故答案为:【点睛】此题考查根据古典概型求概率,关键在于根据题意准确求出基本事件的总数和某一事件包含的基本事件个数.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、Ⅰ详见解析;Ⅱ①,②或.【解析】

Ⅰ可以通过已知证明出平面PAB,这样就可以证明出;Ⅱ以点A为坐标原点,分别以AB,AD,AP为x,y,z轴,建立空间直角坐标系,可以求出相应点的坐标,求出平面PBC的法向量为、平面PCD的法向量,利用空间向量的数量积,求出二面角的大小;求出平面PBC的法向量,利用线面角的公式求出的值.【详解】证明:Ⅰ在图1中,,,为平行四边形,,,,当沿AD折起时,,,即,,又,平面PAB,又平面PAB,.解:Ⅱ以点A为坐标原点,分别以AB,AD,AP为x,y,z轴,建立空间直角坐标系,由于平面ABCD则0,,0,,1,,0,,1,1,,1,,0,,设平面PBC的法向量为y,,则,取,得0,,设平面PCD的法向量b,,则,取,得1,,设二面角的大小为,可知为钝角,则,.二面角的大小为.设AM与面PBC所成角为,0,,1,,,,平面PBC的法向量0,,直线AM与平面PBC所成的角为,,解得或.【点睛】本题考查了利用线面垂直证明线线垂直,考查了利用向量数量积,求二面角的大小以及通过线面角公式求定比分点问题.18、(1)证明见解析,;(2)证明见解析【解析】

(1)由,作差得到,进一步得到,再作差即可得到,从而使问题得到解决;(2),求和即可.【详解】(1),,两式相减:①用换,得②②—①,得,即,所以数列是等差数列,又,∴,,公差,所以.(II).【点睛】本题考查由与的关系求通项以及裂项相消法求数列的和,考查学生的计算能力,是一道容易题.19、(1)(2)【解析】分析:(1)先断定在曲线上,从而需要求,令,求得结果,注意复合函数求导法则,接着应用点斜式写出直线的方程;(2)先将函数解析式求出,之后借助于导数研究函数的单调性,从而求得函数在相应区间上的最值.详解:(Ⅰ)当,.,当,,所以切线方程为.(Ⅱ),,因为,所以.令,,则在单调递减,因为,所以在上增,在单调递增.,,因为,所以在区间上的值域为.点睛:该题考查的是有关应用导数研究函数的问题,涉及到的知识点有导数的几何意义,曲线在某个点处的切线方程的求法,复合函数求导,函数在给定区间上的最值等,在解题的过程中,需要对公式的正确使用.20、(1);(2);(3)存在,1.【解析】

(1)利用基本量法直接计算即可;(2)利用错位相减法计算;(3),令可得,,讨论即可.【详解】(1)设数列的公差为,数列的公比为,因为,所以,即,解得,或(舍去).所以.(2),,所以,所以.(3)由(1)可得,,所以.因为是数列或中的一项,所以,所以,因为,所以,又,则或.当时,有,即,令.则.当时,;当时,,即.由,知无整数解.当时,有,即存在使得是数列中的第2项,故存在正整数,使得是数列中的项.【点睛】本题考查数列的综合应用,涉及到等差、等比数列的通项,错位相减法求数列的前n项和,数列中的存在性问题,是一道较为综合的题.21、(1)见解析;(2)【解析】

(1)取的中点,结合三角形中位线和长度关系,为平行四边形,进而得到,根据线面平行判定定理可证得结论;(2)以,,为,,轴建立空间直角坐标系,分别求得两面的法向量,求得法向量夹角的余弦值;根据二面角为锐角确定最终二面角的余弦值;【详解】(1)取的中点,连结,因为为中点,,,所以,,∴为平行四边形,所以,又因为,所以;(2)由题及(1)易知,,两两垂直,所以以,,为,,轴建立空间直角坐标系,则,,,,,,易知面的法向量为设面的法向量为则可得所以,如图可知二面角为锐角,所以余弦值为【点睛】本题考查立体几何中直线与平面平行关系的证明、空间向量法求解二面角,正确求解法向量是解题的关键,属于中档题.22、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论