版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年高考数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知是等差数列的前项和,若,,则()A.5 B.10 C.15 D.202.阿基米德(公元前287年—公元前212年),伟大的古希腊哲学家、数学家和物理学家,他死后的墓碑上刻着一个“圆柱容球”的立体几何图形,为纪念他发现“圆柱内切球的体积是圆柱体积的,且球的表面积也是圆柱表面积的”这一完美的结论.已知某圆柱的轴截面为正方形,其表面积为,则该圆柱的内切球体积为()A. B. C. D.3.已知集合,,若,则实数的值可以为()A. B. C. D.4.定义在上的函数满足,则()A.-1 B.0 C.1 D.25.已知抛物线的焦点为,过焦点的直线与抛物线分别交于、两点,与轴的正半轴交于点,与准线交于点,且,则()A. B.2 C. D.36.观察下列各式:,,,,,,,,根据以上规律,则()A. B. C. D.7.的图象如图所示,,若将的图象向左平移个单位长度后所得图象与的图象重合,则可取的值的是()A. B. C. D.8.已知不重合的平面和直线,则“”的充分不必要条件是()A.内有无数条直线与平行 B.且C.且 D.内的任何直线都与平行9.已知角的顶点与坐标原点重合,始边与轴的非负半轴重合,若点在角的终边上,则()A. B. C. D.10.为研究语文成绩和英语成绩之间是否具有线性相关关系,统计两科成绩得到如图所示的散点图(两坐标轴单位长度相同),用回归直线近似地刻画其相关关系,根据图形,以下结论最有可能成立的是()A.线性相关关系较强,b的值为1.25B.线性相关关系较强,b的值为0.83C.线性相关关系较强,b的值为-0.87D.线性相关关系太弱,无研究价值11.执行如图所示的程序框图,若输入的,则输出的()A.9 B.31 C.15 D.6312.已知函数,则下列结论错误的是()A.函数的最小正周期为πB.函数的图象关于点对称C.函数在上单调递增D.函数的图象可由的图象向左平移个单位长度得到二、填空题:本题共4小题,每小题5分,共20分。13.五声音阶是中国古乐基本音阶,故有成语“五音不全”.中国古乐中的五声音阶依次为:宫、商、角、徵、羽,如果把这五个音阶全用上,排成一个五个音阶的音序,且要求宫、羽两音阶不相邻且在角音阶的同侧,可排成______种不同的音序.14.已知函数,则过原点且与曲线相切的直线方程为____________.15.设定义域为的函数满足,则不等式的解集为__________.16.若满足约束条件,则的最小值是_________,最大值是_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱柱中,底面是正方形,平面平面,,.过顶点,的平面与棱,分别交于,两点.(Ⅰ)求证:;(Ⅱ)求证:四边形是平行四边形;(Ⅲ)若,试判断二面角的大小能否为?说明理由.18.(12分)已知椭圆,左、右焦点为,点为上任意一点,若的最大值为3,最小值为1.(1)求椭圆的方程;(2)动直线过点与交于两点,在轴上是否存在定点,使成立,说明理由.19.(12分)选修4-5:不等式选讲已知函数.(1)设,求不等式的解集;(2)已知,且的最小值等于,求实数的值.20.(12分)曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的极坐标方程和曲线的直角坐标方程;(2)过原点且倾斜角为的射线与曲线分别交于两点(异于原点),求的取值范围.21.(12分)已知,,求证:(1);(2).22.(10分)已知函数,.(1)若函数在上单调递减,且函数在上单调递增,求实数的值;(2)求证:(,且).
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
利用等差通项,设出和,然后,直接求解即可【详解】令,则,,∴,,∴.【点睛】本题考查等差数列的求和问题,属于基础题2、D【解析】
设圆柱的底面半径为,则其母线长为,由圆柱的表面积求出,代入圆柱的体积公式求出其体积,结合题中的结论即可求出该圆柱的内切球体积.【详解】设圆柱的底面半径为,则其母线长为,因为圆柱的表面积公式为,所以,解得,因为圆柱的体积公式为,所以,由题知,圆柱内切球的体积是圆柱体积的,所以所求圆柱内切球的体积为.故选:D【点睛】本题考查圆柱的轴截面及表面积和体积公式;考查运算求解能力;熟练掌握圆柱的表面积和体积公式是求解本题的关键;属于中档题.3、D【解析】
由题意可得,根据,即可得出,从而求出结果.【详解】,且,,∴的值可以为.故选:D.【点睛】考查描述法表示集合的定义,以及并集的定义及运算.4、C【解析】
推导出,由此能求出的值.【详解】∵定义在上的函数满足,∴,故选C.【点睛】本题主要考查函数值的求法,解题时要认真审题,注意函数性质的合理运用,属于中档题.5、B【解析】
过点作准线的垂线,垂足为,与轴交于点,由和抛物线的定义可求得,利用抛物线的性质可构造方程求得,进而求得结果.【详解】过点作准线的垂线,垂足为,与轴交于点,由抛物线解析式知:,准线方程为.,,,,由抛物线定义知:,,,.由抛物线性质得:,解得:,.故选:.【点睛】本题考查抛物线定义与几何性质的应用,关键是熟练掌握抛物线的定义和焦半径所满足的等式.6、B【解析】
每个式子的值依次构成一个数列,然后归纳出数列的递推关系后再计算.【详解】以及数列的应用根据题设条件,设数字,,,,,,,构成一个数列,可得数列满足,则,,.故选:B.【点睛】本题主要考查归纳推理,解题关键是通过数列的项归纳出递推关系,从而可确定数列的一些项.7、B【解析】
根据图象求得函数的解析式,即可得出函数的解析式,然后求出变换后的函数解析式,结合题意可得出关于的等式,即可得出结果.【详解】由图象可得,函数的最小正周期为,,,则,,取,,则,,,可得,当时,.故选:B.【点睛】本题考查利用图象求函数解析式,同时也考查了利用函数图象变换求参数,考查计算能力,属于中等题.8、B【解析】
根据充分不必要条件和直线和平面,平面和平面的位置关系,依次判断每个选项得到答案.【详解】A.内有无数条直线与平行,则相交或,排除;B.且,故,当,不能得到且,满足;C.且,,则相交或,排除;D.内的任何直线都与平行,故,若,则内的任何直线都与平行,充要条件,排除.故选:.【点睛】本题考查了充分不必要条件和直线和平面,平面和平面的位置关系,意在考查学生的综合应用能力.9、D【解析】
由题知,又,代入计算可得.【详解】由题知,又.故选:D【点睛】本题主要考查了三角函数的定义,诱导公式,二倍角公式的应用求值.10、B【解析】
根据散点图呈现的特点可以看出,二者具有相关关系,且斜率小于1.【详解】散点图里变量的对应点分布在一条直线附近,且比较密集,故可判断语文成绩和英语成绩之间具有较强的线性相关关系,且直线斜率小于1,故选B.【点睛】本题主要考查散点图的理解,侧重考查读图识图能力和逻辑推理的核心素养.11、B【解析】
根据程序框图中的循环结构的运算,直至满足条件退出循环体,即可得出结果.【详解】执行程序框;;;;;,满足,退出循环,因此输出,故选:B.【点睛】本题考查循环结构输出结果,模拟程序运行是解题的关键,属于基础题.12、D【解析】
由可判断选项A;当时,可判断选项B;利用整体换元法可判断选项C;可判断选项D.【详解】由题知,最小正周期,所以A正确;当时,,所以B正确;当时,,所以C正确;由的图象向左平移个单位,得,所以D错误.故选:D.【点睛】本题考查余弦型函数的性质,涉及到周期性、对称性、单调性以及图象变换后的解析式等知识,是一道中档题.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】
按照“角”的位置分类,分“角”在两端,在中间,以及在第二个或第四个位置上,即可求出.【详解】①若“角”在两端,则宫、羽两音阶一定在角音阶同侧,此时有种;②若“角”在中间,则不可能出现宫、羽两音阶不相邻且在角音阶的同侧;③若“角”在第二个或第四个位置上,则有种;综上,共有种.故答案为:1.【点睛】本题主要考查利用排列知识解决实际问题,涉及分步计数乘法原理和分类计数加法原理的应用,意在考查学生分类讨论思想的应用和综合运用知识的能力,属于基础题.14、【解析】
设切点坐标为,利用导数求出曲线在切点的切线方程,将原点代入切线方程,求出的值,于此可得出所求的切线方程.【详解】设切点坐标为,,,,则曲线在点处的切线方程为,由于该直线过原点,则,得,因此,则过原点且与曲线相切的直线方程为,故答案为.【点睛】本题考查导数的几何意义,考查过点作函数图象的切线方程,求解思路是:(1)先设切点坐标,并利用导数求出切线方程;(2)将所过点的坐标代入切线方程,求出参数的值,可得出切点的坐标;(3)将参数的值代入切线方程,可得出切线的方程.15、【解析】
根据条件构造函数F(x),求函数的导数,利用函数的单调性即可得到结论.【详解】设F(x),则F′(x),∵,∴F′(x)>0,即函数F(x)在定义域上单调递增.∵∴,即F(x)<F(2x)∴,即x>1∴不等式的解为故答案为:【点睛】本题主要考查函数单调性的判断和应用,根据条件构造函数是解决本题的关键.16、06【解析】
作不等式组对应的平面区域,利用目标函数的几何意义,即可求出结果.【详解】作出可行域,如图中的阴影部分:求的最值,即求直线在轴上的截距最小和最大时,当直线过点时,轴上截距最大,即z取最小值,.当直线过点时,轴上截距最小,即z取最大值,.故答案为:0;6.【点睛】本题主要考查了线性规划中的最值问题,利用数形结合是解决问题的基本方法,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)证明见解析;(3)不能为.【解析】
(1)由平面平面,可得平面,从而证明;(2)由平面与平面没有交点,可得与不相交,又与共面,所以,同理可证,得证;(3)作交于点,延长交于点,连接,根据三垂线定理,确定二面角的平面角,若,,由大角对大边知,两者矛盾,故二面角的大小不能为.【详解】(1)由平面平面,平面平面,且,所以平面,又平面,所以;(2)依题意都在平面上,因此平面,平面,又平面,平面,平面与平面平行,即两个平面没有交点,则与不相交,又与共面,所以,同理可证,所以四边形是平行四边形;(3)不能.如图,作交于点,延长交于点,连接,由,,,所以平面,则平面,又,根据三垂线定理,得到,所以是二面角的平面角,若,则是等腰直角三角形,,又,所以中,由大角对大边知,所以,这与上面相矛盾,所以二面角的大小不能为.【点睛】本题考查了立体几何中的线线平行和垂直的判定问题,和二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,属中档题.18、(1)(2)存在;详见解析【解析】
(1)由椭圆的性质得,解得后可得,从而得椭圆方程;(2)设,当直线斜率存在时,设为,代入椭圆方程,整理后应用韦达定理得,代入=0由恒成立问题可求得.验证斜率不存在时也适合即得.【详解】解:(1)由题易知解得,所以椭圆方程为(2)设当直线斜率存在时,设为与椭圆方程联立得,显然所以因为化简解得即所以此时存在定点满足题意当直线斜率不存在时,显然也满足综上所述,存在定点,使成立【点睛】本题考查求椭圆的标准方程,考查直线与椭圆相交问题中的定点问题,解题方法是设而不求的思想方法.设而不求思想方法是直线与圆锥曲线相交问题中常用方法,只要涉及交点坐标,一般就用此法.19、(1)(2)【解析】
(1)把f(x)去绝对值写成分段函数的形式,分类讨论,分别求得解集,综合可得结论.(2)把f(x)去绝对值写成分段函数,画出f(x)的图像,找出利用条件求得a的值.【详解】(1)时,.当时,即为,解得.当时,,解得.当时,,解得.综上,的解集为.(2).,由的图象知,,.【点睛】本题主要考查含绝对值不等式的解法及含绝对值的函数的最值问题,体现了分类讨论的数学思想,属于中档题20、(1),;(2).【解析】
(1)先将曲线化为普通方程,再由直角坐标系与极坐标系之间的转化关系:,可得极坐标方程和曲线的直角坐标方程;(2)由已知可得出射线的极坐标方程为,联立和的极坐标方程可得点A和点B的极坐标,从而得出,由的范围可求得的取值范围.【详解】(1)曲线的普通方程为,即,其极坐标方程为;曲线的极坐标方程为,即,其直角坐标方程为;(2)射线的极坐标方程为,联立,联立,的取值范围是【点睛】本题考查圆的参数方程与普通方程互化,圆,抛物线的极坐标方程与普通方程的互化,以及在极坐标下的直线与圆和抛物线的位置关系,属于中档题.21、(1)见解析;(2)见解析.【解析】
(1)结合基本不等式可证明;(2)利用基本不等式得,即,同理得其他两个式子,三式相加可证结论.【详解】(1)∵,∴,当且仅当a=b=c等号成立,∴;(2)由基本不等式,∴,同理,,∴,当且仅当a=b=c等
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度经济学家返聘及研究合同
- 钢绞线合同范本
- 二零二四年度物业服务合同服务内容和费用规定
- 2024年度教育信息化系统建设合同条款及标的明细
- 2024年度餐馆经理劳动合同模板
- 高级育婴师培训合同范本
- 2024版设备采购合同specificationsanddeliveryschedule
- 2024年度版权质押合同:标的为动画电影制作资金筹措
- 退税终止合同范本
- 二零二四年度南海区食品安全监管与检测合同
- 2024秋期国家开放大学专科《基础会计》一平台在线形考(形考任务一至四)试题及答案
- DB34∕T 3188-2018 建筑光伏系统防火技术规范
- (人教2024版)英语七年级上册 Unit 5 全册单元课时课件
- 部编版九年级上册历史全册知识点背诵手册
- 医古文智慧树知到答案2024年浙江中医药大学
- 2024年秋新人教版地理七年级上册全册教学课件(新版教材)
- 2024-2030年中国聚对苯二甲酸乙二酯(PETG)行业市场发展趋势与前景展望战略分析报告
- 2024云南电信春季校园招聘高频考题难、易错点模拟试题(共500题)附带答案详解
- 《税法》课件 2.增值税概述及征税范围 - 副本
- 中国近现代史纲要-第七章
- 统编版2024年新教材七年级上册历史第四单元学业质量测试卷(含答案)
评论
0/150
提交评论