版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第4章初等模型4.1公平的席位分配4.2双层玻璃窗的功效4.3汽车刹车距离4.4划艇比赛的成绩4.5实物交换4.6核军备竞赛4.7启帆远航4.8量纲分析与无量纲化4.1
公平的席位分配系别学生比例20席的分配人数(%)比例结果甲10351.5
乙6331.5
丙3417.0总和200100.020.02021席的分配比例结果10.8156.6153.57021.00021问题三个系学生共200名(甲系100,乙系60,丙系40),代表会议共20席,按比例分配,三个系分别为10,6,4席。现因学生转系,三系人数为103,63,34,问20席如何分配。若增加为21席,又如何分配。比例加惯例对丙系公平吗系别学生比例20席的分配人数(%)比例结果甲10351.510.3
乙6331.56.3
丙3417.03.4总和200100.020.020系别学生比例20席的分配人数(%)比例结果甲10351.510.310
乙6331.56.36
丙3417.03.44总和200100.020.02021席的分配比例结果10.815116.61573.570321.00021“公平”分配方法衡量公平分配的数量指标人数席位A方p1
n1B方p2n2当p1/n1=p2/n2
时,分配公平
p1/n1–p2/n2~对A的绝对不公平度p1=150,n1=10,p1/n1=15p2=100,n2=10,p2/n2=10p1=1050,n1=10,p1/n1=105p2=1000,n2=10,p2/n2=100p1/n1–p2/n2=5但后者对A的不公平程度已大大降低!虽二者的绝对不公平度相同若p1/n1>p2/n2
,对不公平A
p1/n1–p2/n2=5公平分配方案应使rA
,rB
尽量小设A,B已分别有n1,n2席,若增加1席,问应分给A,还是B?不妨设分配开始时p1/n1>p2/n2
,即对A不公平
~对A的相对不公平度将绝对度量改为相对度量类似地定义rB(n1,n2)将一次性的席位分配转化为动态的席位分配,即“公平”分配方法若p1/n1>p2/n2
,定义1)若p1/(n1+1)>p2/n2
,则这席应给A2)若p1/(n1+1)<p2/n2
,3)若p1/n1>p2/(n2+1),应计算rB(n1+1,n2)应计算rA(n1,n2+1)若rB(n1+1,n2)<rA(n1,n2+1),则这席应给应讨论以下几种情况初始p1/n1>p2/n2
问:p1/n1<p2/(n2+1)
是否会出现?A否!若rB(n1+1,n2)>rA(n1,n2+1),则这席应给B当rB(n1+1,n2)<rA(n1,n2+1),该席给ArA,rB的定义该席给A否则,该席给B
定义该席给Q值较大的一方推广到m方分配席位该席给Q值最大的一方Q
值方法计算,三系用Q值方法重新分配21个席位按人数比例的整数部分已将19席分配完毕甲系:p1=103,n1=10乙系:p2=63,n2=6丙系:p3=34,n3=3用Q值方法分配第20席和第21席第20席第21席同上Q3最大,第21席给丙系甲系11席,乙系6席,丙系4席Q值方法分配结果公平吗?Q1最大,第20席给甲系进一步的讨论Q值方法比“比例加惯例”方法更公平吗?席位分配的理想化准则已知:m方人数分别为
p1,p2,…,pm,记总人数为P=p1+p2+…+pm,待分配的总席位为N。设理想情况下m方分配的席位分别为n1,n2,…,nm(自然应有n1+n2+…+nm=N),记qi=Npi
/P,i=1,2,…,m,ni
应是N和p1,…,pm
的函数,即ni
=
ni
(N,p1,…,pm)若qi
均为整数,显然应ni=qi
qi=Npi
/P不全为整数时,ni
应满足的准则:记[qi]–=floor(qi)~向qi方向取整;[qi]+=ceil(qi)~向
qi方向取整.1)[qi]–ni
[qi]+(i=1,2,…,m),2)ni
(N,p1,…,pm)ni
(N+1,p1,…,pm)(i=1,2,…,m)
即ni
必取[qi]–,[qi]+之一即当总席位增加时,ni不应减少“比例加惯例”方法满足1),但不满足2)Q值方法满足2),但不满足1)。令人遗憾!2d墙室内
T1室外
T2dd墙l室内T1室外T2问题双层玻璃窗与同样多材料的单层玻璃窗相比,减少多少热量损失假设热量传播只有传导,没有对流;T1,T2不变,热传导过程处于稳态;材料均匀,热传导系数为常数;建模热传导定律Q1Q2Q~单位时间单位面积传导的热量T~温差,d~材料厚度,k~热传导系数4.2
双层玻璃窗的功效dd墙l室内T1室外T2Q1TaTb记双层玻璃窗传导的热量Q1Ta~内层玻璃的外侧温度Tb~外层玻璃的内侧温度k1~玻璃的热传导系数k2~空气的热传导系数建模记单层玻璃窗传导的热量Q22d墙室内T1室外T2Q2双层与单层窗传导的热量之比k1=410-3~810-3,k2=2.510-4,
k1/k2=16~32对Q1比Q2的减少量作最保守的估计,取k1/k2=16建模hQ1/Q24200.060.030.026模型应用取h=l/d=4,则Q1/Q2=0.03即双层玻璃窗与同样多材料的单层玻璃窗相比,可减少97%的热量损失。结果分析Q1/Q2所以如此小,是由于层间空气极低的热传导系数k2
,
而这要求空气非常干燥、不流通。房间通过天花板、墙壁……损失的热量更多。双层窗的功效不会如此之大4.3
汽车刹车距离美国的某些司机培训课程中的驾驶规则:背景与问题正常驾驶条件下,车速每增10英里/小时,后车与前车的距离应增一个车身的长度。实现这个规则的简便办法是“2秒准则”:后车司机从前车经过某一标志开始默数
2秒钟后到达同一标志,而不管车速如何判断“2秒准则”与“车身”规则是否一样;建立数学模型,寻求更好的驾驶规则。问题分析常识:刹车距离与车速有关10英里/小时(16公里/小时)车速下2秒钟行驶29英尺(9米)>>车身的平均长度15英尺(=4.6米)“2秒准则”与“10英里/小时加一车身”规则不同刹车距离反应时间制动器作用力、车重、车速、道路、气候……最大制动力与车质量成正比,使汽车作匀减速运动。车速常数反应距离制动距离司机状况制动系统灵活性常数假设与建模
1.刹车距离d等于反应距离d1与制动距离d2之和2.反应距离d1与车速v成正比3.刹车时使用最大制动力F,F作功等于汽车动能的改变;Fd2=mv2/2F
mt1为反应时间且F与车的质量m成正比反应时间t1的经验估计值为0.75秒参数估计
利用交通部门提供的一组实际数据拟合k模型最小二乘法k=0.06计算刹车距离、刹车时间车速(英里/小时)(英尺/秒)实际刹车距离(英尺)计算刹车距离(英尺)刹车时间(秒)2029.342(44)39.01.53044.073.5(78)76.61.84058.7116(124)126.22.15073.3173(186)187.82.56088.0248(268)261.43.070102.7343(372)347.13.680117.3464(506)444.84.3“2秒准则”应修正为“t秒准则”模型车速(英里/小时)刹车时间(秒)201.5301.8402.1502.5603.0703.6804.3车速(英里/小时)0~1010~4040~6060~80t(秒)12344.4
划艇比赛的成绩赛艇2000米成绩t(分)种类1234平均单人7.167.257.287.177.21双人6.876.926.956.776.88四人6.336.426.486.136.32八人5.875.925.825.735.84艇长l
艇宽b(米)(米)l/b7.930.29327.09.760.35627.411.750.57421.018.280.61030.0空艇重w0(kg)
浆手数n
16.313.618.114.7对四种赛艇(单人、双人、四人、八人)4次国际大赛冠军的成绩进行比较,发现与浆手数有某种关系。试建立数学模型揭示这种关系。问题准备调查赛艇的尺寸和重量l/b,w0/n
基本不变问题分析
前进阻力~浸没部分与水的摩擦力
前进动力~浆手的划浆功率分析赛艇速度与浆手数量之间的关系赛艇速度由前进动力和前进阻力决定划浆功率
赛艇速度赛艇速度前进动力前进阻力浆手数量
艇重浸没面积
对浆手体重、功率、阻力与艇速的关系等作出假定运用合适的物理定律建立模型模型假设1)艇形状相同(l/b为常数),w0与n成正比2)v是常数,阻力f与sv2成正比符号:艇速v,浸没面积
s,浸没体积A,空艇重w0,阻力f,浆手数n,浆手功率
p,浆手体重
w,艇重W艇的静态特性艇的动态特性3)w相同,p不变,p与w成正比浆手的特征模型建立f
sv2p
wv
(n/s)1/3s1/2
A1/3A
W(=w0+nw)
ns
n2/3v
n1/9比赛成绩
t
n
–1/9np
fv模型检验n
t17.2126.8846.3285.84最小二乘法利用4次国际大赛冠军的平均成绩对模型
t
n
–1/9进行检验tn12487.216.886.325.84••••与模型巧合!(10周5)问题甲有物品X,乙有物品Y,双方为满足更高的需要,商定相互交换一部分。研究实物交换方案。yxp.用x,y分别表示甲(乙)占有X,Y的数量。设交换前甲占有X的数量为x0,乙占有Y的数量为y0,作图:若不考虑双方对X,Y的偏爱,则矩形内任一点p(x,y)都是一种交换方案:甲占有(x,y),乙占有(x0-x,y0-y)xyyo0xo••4.5
实物交换xyyoy1y20x1x2xop1p2..甲的无差别曲线分析与建模如果甲占有(x1,y1)与占有(x2,y2)具有同样的满意程度,即p1,p2对甲是无差别的,MN将所有与p1,p2无差别的点连接起来,得到一条无差别曲线MN,
线上各点的满意度相同,线的形状反映对X,Y的偏爱程度,N1M1p3(x3,y3).比MN各点满意度更高的点如
p3,在另一条无差别曲线M1N1上。于是形成一族无差别曲线(无数条)。p1.p2.c1y0xf(x,y)=c1无差别曲线族的性质:
单调减(x增加,y减小)
下凸(凸向原点)
互不相交在p1点占有x少、y多,宁愿以较多的y换取较少的x;在p2点占有y少、x多,就要以较多的
x换取较少的y。甲的无差别曲线族记作f(x,y)=c1c1~满意度(f~等满意度曲线)xyOg(x,y)=c2c2乙的无差别曲线族g(x,y)=c2具有相同性质(形状可以不同)
双方的交换路径乙的无差别曲线族g=c2
(坐标系x’O’y’,且反向)甲的无差别曲线族f=c1xyyoOxof=c1O‘x’y’g=c2ABp
P’
双方满意的交换方案必在AB(交换路径)上因为在AB外的任一点p’,(双方)满意度低于AB上的点p两族曲线切点连线记作ABABp
交换方案的进一步确定交换方案~交换后甲的占有量(x,y)0xx0,0yy0矩形内任一点交换路径AB双方的无差别曲线族等价交换原则X,Y用货币衡量其价值,设交换前x0,y0价值相同,则等价交换原则下交换路径为CD(x0,0),(0,y0)两点的连线CDAB与CD的交点p设X单价a,Y单价b,则等价交换下ax+by=s(s=ax0=by0)yyo0xo..x4.6
核军备竞赛冷战时期美苏声称为了保卫自己的安全,实行“核威慑战略”,核军备竞赛不断升级。随着前苏联的解体和冷战的结束,双方通过了一系列的核裁军协议。在什么情况下双方的核军备竞赛不会无限扩张,而存在暂时的平衡状态。当一方采取加强防御、提高武器精度、发展多弹头导弹等措施时,平衡状态会发生什么变化。估计平衡状态下双方拥有的最少的核武器数量,这个数量受哪些因素影响。背景以双方(战略)核导弹数量描述核军备的大小。假定双方采取如下同样的核威慑战略:认为对方可能发起所谓第一次核打击,即倾其全部核导弹攻击己方的核导弹基地;
乙方在经受第一次核打击后,应保存足够的核导弹,给对方重要目标以毁灭性的打击。在任一方实施第一次核打击时,假定一枚核导弹只能攻击对方的一个核导弹基地。摧毁这个基地的可能性是常数,它由一方的攻击精度和另一方的防御能力决定。模型假设图的模型y=f(x)~甲方有x枚导弹,乙方所需的最少导弹数x=g(y)~乙方有y枚导弹,甲方所需的最少导弹数当x=0时y=y0,y0~乙方的威慑值xyy00y0~甲方实行第一次打击后已经没有导弹,乙方为毁灭甲方工业、交通中心等目标所需导弹数x1x0y1P(xm,ym)x=g(y)xy0y0y=f(x)y=f(x)乙安全区甲安全区双方安全区P~平衡点(双方最少导弹数)乙安全线精细模型乙方残存率
s~甲方一枚导弹攻击乙方一个基地,基地未被摧毁的概率。sx个基地未摧毁,y–x个基地未攻击。x<y甲方以x攻击乙方y个基地中的x个,y0=sx+y–xx=yy0=sy乙的x–y个被攻击2次,s2(x–y)个未摧毁;y–(x–y)=2y–x个被攻击1次,s(2y–x)个未摧毁y0=s2(x–y)+s(2y–x)x=2yy0=s2yy<x<2yy=y0+(1-s)xy=y0/sy=y0/s2
a~交换比(甲乙导弹数量比)x=ay,精细模型x=y,y=y0/sx=2y,y=y0/s2y0~威慑值s~残存率y=f(x)y是一条上凸的曲线y0变大,曲线上移、变陡s变大,y减小,曲线变平a变大,y增加,曲线变陡xy0y0x<y,y=y0+(1-s)xx=yx=2yy<x<2y,甲方增加经费保护及疏散工业、交通中心等目标乙方威慑值y0变大xy0y0x0P(xm,ym)x=g(y)y=f(x)甲方的被动防御也会使双方军备竞赛升级。(其它因素不变)乙安全线y=f(x)上移模型解释
平衡点PP´甲方将固定核导弹基地改进为可移动发射架乙安全线y=f(x)不变甲方残存率变大威慑值x0和交换比不变x减小,甲安全线x=g(y)向y轴靠近xy0y0x0P(xm,ym)x=g(y)y=f(x)模型解释
甲方这种单独行为,会使双方的核导弹减少PP´双方发展多弹头导弹,每个弹头可以独立地摧毁目标(x
,y仍为双方核导弹的数量)双方威慑值减小,残存率不变,交换比增加y0减小
y下移且变平xy0y0x0P(xm,ym)x=g(y)y=f(x)a变大y增加且变陡双方导弹增加还是减少,需要更多信息及更详细的分析模型解释
乙安全线y=f(x)帆船在海面上乘风远航,确定最佳的航行方向及帆的朝向。简化问题AB
风向北航向帆船海面上东风劲吹,设帆船要从A点驶向正东方的B点,确定起航时的航向,帆以及帆的朝向4.7
启帆远航w=w1+w2w1w2
wp模型分析风(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025工商行政工作计划样例
- 汽车销售个人年终工作总结与计划范文
- 开学学习计划教研学习计划
- 关于法制宣传教育的工作计划范文
- 初三英语教学新学期工作计划
- 《GMP验收办法》课件
- 2025年人事行政部工作计划
- 工伤委托律师代理合同
- 体育生自愿参加训练协议书
- 《复合材料大综述》课件
- 高速公路路牌广告合同范文(3篇)
- 上海市浦东惠南学区2024-2025学年九年级12月月考语文试题及答案
- 抵制心理暴力与骚扰管理规定
- 银行业专业人员职业资格初级(公司信贷)模拟试卷68
- 金融理论与政策(华南农业大学)-中国大学MOOC答案2023版
- 2024年《论教育》全文课件
- 生命安全与救援学习通超星期末考试答案章节答案2024年
- 节能改造合同协议
- 国家开放大学专科《法理学》(第三版教材)形成性考核试题及答案
- (正式版)SHT 3158-2024 石油化工管壳式余热锅炉
- MOOC 创业基础-暨南大学 中国大学慕课答案
评论
0/150
提交评论