网络科学第二讲网络与图_第1页
网络科学第二讲网络与图_第2页
网络科学第二讲网络与图_第3页
网络科学第二讲网络与图_第4页
网络科学第二讲网络与图_第5页
已阅读5页,还剩66页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

网络科学基础

ElementsofNetworkScience齐鲁工业大学信息学院

主讲人:张维玉

电话箱:zwy@第二讲网络与图2023/2/1主讲教师:张维玉2Canonewalkacrossthesevenbridgesandnevercrossthesamebridgetwice?

Canonewalkacrossthesevenbridgesandnevercrossthesamebridgetwice?

1735:LeonhardEuler’stheorem:Ifagraphhasnodesofodddegree,thereisnopath.Ifagraphisconnectedandhasnoodddegreenodes,ithasat

leastonepath.

components:nodes,vertices(节点)

N

interactions:links,edges (连边)

L

system: network,graph (网络,图)

(N,L)NetworkScience:GraphTheory2012网络组件networkoftenreferstorealsystemswww,socialnetworkmetabolicnetwork.Language:(Network,node,link)graph:mathematicalrepresentationofanetworkwebgraph,socialgraph(aFacebookterm)

Language:(Graph,vertex,edge)Wewilltrytomakethisdistinctionwheneveritisappropriate,butinmostcaseswewillusethetwotermsinterchangeably.(大部分场合,我们互用网络和图这两个概念)网络与图的关系PeterMaryAlbertAlbertco-workerfriendbrothersfriendProtein1Protein2Protein5Protein9Movie1Movie3Movie2Actor3Actor1Actor2Actor4N=4L=4网络是一种通用工具Thechoiceofthepropernetworkrepresentationdeterminesourabilitytousenetworktheorysuccessfully.

Insomecasesthereisaunique(独一无二),unambiguousrepresentation.Inothercases,therepresentationisbynomeansunique.

Forexample,thewayweassignthelinksbetweenagroupofindividualswilldeterminethenatureofthequestionwecanstudy.选择一个适当的网络表达Ifyouconnectindividualsthatworkwitheachother,youwillexploretheprofessionalnetwork.NetworkScience:GraphTheory2012Ifyouconnectthosethathavearomanticandsexualrelationship,youwillbeexploringthesexualnetworks.Ifyouconnectindividualsbasedontheirfirstname(allPetersconnectedtoeachother),youwillbeexploringwhat?Itisanetwork,nevertheless.根据我们要研究的目标来构建网络是开展研究的第一步!网络不是毫无目的随意构建的!Links:undirected(symmetrical,对称关系) Graph:

Directedlinks:URLsonthewwwphonecallsmetabolicreactions(代谢反应)Undirected(无向网络)Directed有向网络ABDCLMFGHILinks:directed(arcs).Digraph=directedgraph:Undirectedlinks:coauthorshiplinksActornetworkproteininteractionsAnundirectedlinkisthesuperpositionoftwooppositedirectedlinks.AGFBCDENodedegree:thenumberoflinksconnectedtothenode.UndirectedIndirectednetworkswecandefineanin-degreeandout-degree.The(total)degreeisthesumofin-andout-degree.Source:anodewithkin=0;Sink:anodewithkout=0.DirectedAGFBCDEAB节点的度(degree)Wehaveasampleofvaluesx1,...,xNAverage

(a.k.a.mean):typicalvalue

<x>=(x1+x1+...+xN)/N=Σixi/N度的平均值能表达什么信息?度的平均值--一个统计意义上的值N–thenumberofnodesinthegraphUndirectedDirectedAFBCDEjiThemaximumnumberoflinksanetworkofNnodescanhaveis:AgraphwithLinkL=Lmax

iscalledacompletegraph,anditsaveragedegreeis<k>=N-1完全网络Mostnetworksobservedinrealsystemsaresparse(稀疏):L<<Lmax

or

<k><<N-1. WWW(NDSample): N=325,729; L=1.4106 Lmax=1012 <k>=4.51 Protein(S.Cerevisiae): N=1,870; L=4,470 Lmax=107 <k>=2.39 Coauthorship(Math): N=70,975; L=2105 Lmax=31010 <k>=3.9 MovieActors: N=212,250; L=6106 Lmax=1.81013 <k>=28.78

真实的网络大多都是稀疏的(sparse)ThemaximumnumberoflinksanetworkofNnodescanhaveis:METCALFE’SLAW(梅特卡夫定律)Aij=1ifthereisalinkbetweennodeiandjAij=0ifnodesiandjarenotconnectedtoeachother.网络表示形式—连接矩阵Notethatforadirectedgraph(right)thematrixisnotsymmetric.

42312314abcdefgha01001010b10100001c01010110d00101000e10010000f

00100010g

10100000h

01000000begacfhdUndirected2314Directed42313UndirectedDirected1423214Actornetwork,protein-proteininteractionsWWW,citationnetworksUnweighted(无权重)(undirected)Weighted(有权重)(undirected)31423214protein-proteininteractions,wwwCallGraph,metabolicnetworksSelf-interactionsMultigraph(undirected)31423214Proteininteractionnetwork,wwwSocialnetworks,collaborationnetworksCompleteGraph(undirected)3142Actornetwork,protein-proteininteractions真实的网络往往具备多种特征WWW>directedmultigraphwithself-interactionsProteinInteractions>undirectedunweightedwithself-interactionsCollaborationnetwork>undirectedmultigraphorweighted.Mobilephonecalls>directed,weighted.FacebookFriendshiplinks>undirected,unweighted.你的微博网络符合哪些特征?bipartitegraph

(orbigraph)isagraphwhosenodescanbedividedintotwodisjointsets

UandVsuchthateverylinkconnectsanodeinUtooneinV;thatis,UandVareindependentsets.Examples:

HollywoodactornetworkCollaborationnetworksDiseasenetwork(diseasome)二部图GenenetworkGENOMEPHENOMEDISEASOMEDiseasenetworkGoh,Cusick,Valle,Childs,Vidal&Barabási,PNAS(2007)GENENETWORK–DISEASENETWORKHUMANDISEASENETWORKNetworkScience:GraphTheory2012ApathisasequenceofnodesinwhicheachnodeisadjacenttothenextonePi0,inoflengthnbetweennodesi0andinisanorderedcollectionofn+1nodesandnlinks

Apathcanintersectitselfandpassthroughthesamelinkrepeatedly.Eachtimealinkiscrossed,itiscountedseparatelyAlegitimate(合法的)pathonthegraphontheright:ABCBCADEEBA

Inadirectednetwork,thepathcanfollowonlythedirectionofanarrow.PATHS(路径)ABCDEThedistance(shortestpath,geodesicpath)betweentwonodesisdefinedasthenumberofedgesalongtheshortestpathconnectingthem.*Ifthetwonodesaredisconnected,thedistanceisinfinity.Indirectedgraphseachpathneedstofollowthedirectionofthearrows.ThusinadigraphthedistancefromnodeAtoB(onanABpath)isgenerallydifferentfromthedistancefromnodeBtoA(onaBCApath).DISTANCEINAGRAPHShortestPath,GeodesicPathDCABDCABNij,numberofpathsbetweenanytwonodesiandj:

Lengthn=1:

Ifthereisalinkbetweeniandj,thenAij=1andAij=0otherwise.Lengthn=2:

Ifthereisapathoflengthtwobetweeniandj,thenAikAkj=1,andAikAkj=0otherwise.Thenumberofpathsoflength2:Lengthn:Ingeneral,ifthereisapathoflengthnbetweeniandj,thenAik…Alj=1andAik…Alj=0otherwise.Thenumberofpathsoflengthnbetweeniandjis*

*holdsforbothdirectedandundirectednetworks.使用连接矩阵可以方便求出n步路径的数量。NUMBEROFPATHSBETWEENTWONODESAdjacencyMatrixDistancebetweennode

1

andnode4:Startat

1.FINDINGDISTANCES:BREADTHFIRSTSEATCH1111222223333333344444444111111111222223333333344444444Distancebetweennode

1

andnode4:Startat

1.Findthenodesadjacentto

1.Markthemasatdistance1.Puttheminaqueue.11111111222223333333344444444Distancebetweennode

1

andnode4:Startat

1.Findthenodesadjacentto

1.Markthemasatdistance1.Puttheminaqueue.Takethefirstnodeoutofthequeue.Findtheunmarkednodesadjacenttoitinthegraph.Markthemwiththelabelof2.Puttheminthequeue.111122222111Distancebetweennode

1

andnode4:Repeatuntilyoufindnode4ortherearenomorenodesinthequeue.Thedistancebetween

1

and

4

isthelabelof

4

or,if

4

doesnothavealabel,infinity.1111222223333333344444444Diameter:

dmax

themaximumdistancebetweenanypairofnodesinthegraph.

Averagepathlength/distance,<d>,foraconnectedgraph:wheredij

isthedistancefromnodeitonodej

Inanundirectedgraph

dij=dji,so

weonlyneedtocountthemonce:NETWORKDIAMETERANDAVERAGEDISTANCECanonewalkacrossthesevenbridgesandnevercrossthesamebridgetwice?

/answer/graphs.htmEulerPATHorCIRCUIT:returntothestartingpointbytravelingeachlinkofthegraphonceandonlyonce.Everyvertexofthisgraphhasanevendegree,thereforethisisanEuleriangraph.FollowingtheedgesinalphabeticalordergivesanEuleriancircuit/cycle./wiki/Euler_circuitEULERIANGRAPH:ithasanEulerianpathIfadigraphisstronglyconnectedandthein-degreeofeachnodeisequaltoitsout-degree,thenthereisanEulercircuitOtherwisethereisnoEulercircuit.inacircuitweneedtoentereachnodeasmanytimesasweleaveit.ABCDEFGEULERCIRCUITSINDIRECTEDGRAPHSPATHOLOGY:summary25431Path25431ShortestPathAsequenceofnodessuchthateachnodeisconnectedtothenextnodealongthepathbyalink.Thepathwiththeshortestlengthbetweentwonodes(distance).PATHOLOGY:summary25431Diameter25431AveragePathLengthThelongestshortestpathinagraphTheaverageoftheshortestpathsforallpairsofnodes.25431Cycle25431Self-avoidingPathApathwiththesamestartandendnode.Apaththatdoesnotintersectitself.2543125431EulerianPathHamiltonianPathApaththatvisitseachnodeexactlyonce.Apaththattraverseseachlinkexactlyonce.Connected(undirected)graph:anytwoverticescanbejoinedbyapath.Adisconnectedgraphismadeupbytwoormoreconnectedcomponents.Bridge:ifweerase(去除)

it,thegraphbecomesdisconnected.LargestComponent:GiantComponent最大连通子图Therest:IsolatesCONNECTIVITYOFUNDIRECTEDGRAPHSDCABFFGDCABFFGTheadjacencymatrixofanetworkwithseveralcomponentscanbewritteninablock-diagonalform,sothatnonzeroelementsareconfinedtosquares,withallotherelementsbeingzero:FigureafterNewman,2010CONNECTIVITYOFUNDIRECTEDGRAPHSAdjacencyMatrixNetworkScience:GraphTheory2012Stronglyconnecteddirectedgraph:hasapathfromeachnodetoeveryothernodeandviceversa(e.g.ABpathandBApath).Weaklyconnecteddirectedgraph:itisconnectedifwedisregardtheedgedirections.Stronglyconnectedcomponentscanbeidentified,butnoteverynodeispartofanontrivialstronglyconnectedcomponent.In-component:nodesthatcanreachthescc,Out-component:nodesthatcanbereachedfromthescc.DCABFGEECABGFDDegreedistribution pkTHREECENTRALQUANTITIESINNETWORKSCIENCEAveragepathlength <d>Clusteringcoefficient CWehaveasampleofvaluesx1,...,xNDistributionofx(a.k.a.PDF):probabilitythatarandomlychosenvalueisx

P(x)=(#valuesx)/N

ΣiP(xi)=1always!STATISTICSREMINDERHistograms>>>(直方图)NetworkScience:GraphTheory2012Degreedistribution

P(k):probabilitythat

arandomlychosenvertexhasdegreekNk=#nodeswithdegreekP(k)=Nk/N➔plotkP(k)123DEGREEDISTRIBUTIONdiscreterepresentation:pkist

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论