版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022高考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列几何体的三视图中,恰好有两个视图相同的几何体是()A.正方体 B.球体C.圆锥 D.长宽高互不相等的长方体2.根据最小二乘法由一组样本点(其中),求得的回归方程是,则下列说法正确的是()A.至少有一个样本点落在回归直线上B.若所有样本点都在回归直线上,则变量同的相关系数为1C.对所有的解释变量(),的值一定与有误差D.若回归直线的斜率,则变量x与y正相关3.已知命题,且是的必要不充分条件,则实数的取值范围为()A. B. C. D.4.已知是空间中两个不同的平面,是空间中两条不同的直线,则下列说法正确的是()A.若,且,则B.若,且,则C.若,且,则D.若,且,则5.设是两条不同的直线,是两个不同的平面,则下列命题正确的是()A.若,,则 B.若,,则C.若,,,则 D.若,,,则6.已知、分别为双曲线:(,)的左、右焦点,过的直线交于、两点,为坐标原点,若,,则的离心率为()A.2 B. C. D.7.设,是两条不同的直线,,是两个不同的平面,给出下列四个命题:①若,,则;②若,,则;③若,,则;④若,,则;其中真命题的个数为()A. B. C. D.8.已知函数,若,则的值等于()A. B. C. D.9.若,,,则下列结论正确的是()A. B. C. D.10.已知函数(),若函数在上有唯一零点,则的值为()A.1 B.或0 C.1或0 D.2或011.点为不等式组所表示的平面区域上的动点,则的取值范围是()A. B. C. D.12.点在所在的平面内,,,,,且,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若存在直线l与函数及的图象都相切,则实数的最小值为___________.14.已知,则______,______.15.展开式中的系数为________.16.在的展开式中,的系数为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,角的对边分别为,若.(1)求角的大小;(2)若,为外一点,,求四边形面积的最大值.18.(12分)在中,,,.求边上的高.①,②,③,这三个条件中任选一个,补充在上面问题中并作答.19.(12分)[选修45:不等式选讲]已知都是正实数,且,求证:.20.(12分)已知公比为正数的等比数列的前项和为,且,.(1)求数列的通项公式;(2)设,求数列的前项和.21.(12分)已知,,分别是三个内角,,的对边,.(1)求;(2)若,,求,.22.(10分)如图,在四棱锥中,底面是矩形,是的中点,平面,且,.()求与平面所成角的正弦.()求二面角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】
根据基本几何体的三视图确定.【详解】正方体的三个三视图都是相等的正方形,球的三个三视图都是相等的圆,圆锥的三个三视图有一个是圆,另外两个是全等的等腰三角形,长宽高互不相等的长方体的三视图是三个两两不全等的矩形.故选:C.【点睛】本题考查基本几何体的三视图,掌握基本几何体的三视图是解题关键.2.D【解析】
对每一个选项逐一分析判断得解.【详解】回归直线必过样本数据中心点,但样本点可能全部不在回归直线上﹐故A错误;所有样本点都在回归直线上,则变量间的相关系数为,故B错误;若所有的样本点都在回归直线上,则的值与相等,故C错误;相关系数r与符号相同,若回归直线的斜率,则,样本点分布应从左到右是上升的,则变量x与y正相关,故D正确.故选D.【点睛】本题主要考查线性回归方程的性质,意在考查学生对该知识的理解掌握水平和分析推理能力.3.D【解析】
求出命题不等式的解为,是的必要不充分条件,得是的子集,建立不等式求解.【详解】解:命题,即:,是的必要不充分条件,,,解得.实数的取值范围为.故选:.【点睛】本题考查根据充分、必要条件求参数范围,其思路方法:(1)解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间关系列出关于参数的不等式(组)求解.(2)求解参数的取值范围时,一定要注意区间端点值的检验.4.D【解析】
利用线面平行和垂直的判定定理和性质定理,对选项做出判断,举出反例排除.【详解】解:对于,当,且,则与的位置关系不定,故错;对于,当时,不能判定,故错;对于,若,且,则与的位置关系不定,故错;对于,由可得,又,则故正确.故选:.【点睛】本题考查空间线面位置关系.判断线面位置位置关系利用好线面平行和垂直的判定定理和性质定理.一般可借助正方体模型,以正方体为主线直观感知并准确判断.5.C【解析】
根据空间中直线与平面、平面与平面位置关系相关定理依次判断各个选项可得结果.【详解】对于,当为内与垂直的直线时,不满足,错误;对于,设,则当为内与平行的直线时,,但,错误;对于,由,知:,又,,正确;对于,设,则当为内与平行的直线时,,错误.故选:.【点睛】本题考查立体几何中线面关系、面面关系有关命题的辨析,考查学生对于平行与垂直相关定理的掌握情况,属于基础题.6.D【解析】
作出图象,取AB中点E,连接EF2,设F1A=x,根据双曲线定义可得x=2a,再由勾股定理可得到c2=7a2,进而得到e的值【详解】解:取AB中点E,连接EF2,则由已知可得BF1⊥EF2,F1A=AE=EB,设F1A=x,则由双曲线定义可得AF2=2a+x,BF1﹣BF2=3x﹣2a﹣x=2a,所以x=2a,则EF2=2a,由勾股定理可得(4a)2+(2a)2=(2c)2,所以c2=7a2,则e故选:D.【点睛】本题考查双曲线定义的应用,考查离心率的求法,数形结合思想,属于中档题.对于圆锥曲线中求离心率的问题,关键是列出含有中两个量的方程,有时还要结合椭圆、双曲线的定义对方程进行整理,从而求出离心率.7.C【解析】
利用线线、线面、面面相应的判定与性质来解决.【详解】如果两条平行线中一条垂直于这个平面,那么另一条也垂直于这个平面知①正确;当直线平行于平面与平面的交线时也有,,故②错误;若,则垂直平面内以及与平面平行的所有直线,故③正确;若,则存在直线且,因为,所以,从而,故④正确.故选:C.【点睛】本题考查空间中线线、线面、面面的位置关系,里面涉及到了相应的判定定理以及性质定理,是一道基础题.8.B【解析】
由函数的奇偶性可得,【详解】∵其中为奇函数,也为奇函数∴也为奇函数∴故选:B【点睛】函数奇偶性的运用即得结果,小记,定义域关于原点对称时有:①奇函数±奇函数=奇函数;②奇函数×奇函数=偶函数;③奇函数÷奇函数=偶函数;④偶函数±偶函数=偶函数;⑤偶函数×偶函数=偶函数;⑥奇函数×偶函数=奇函数;⑦奇函数÷偶函数=奇函数9.D【解析】
根据指数函数的性质,取得的取值范围,即可求解,得到答案.【详解】由指数函数的性质,可得,即,又由,所以.故选:D.【点睛】本题主要考查了指数幂的比较大小,其中解答中熟记指数函数的性质,求得的取值范围是解答的关键,着重考查了计算能力,属于基础题.10.C【解析】
求出函数的导函数,当时,只需,即,令,利用导数求其单调区间,即可求出参数的值,当时,根据函数的单调性及零点存在性定理可判断;【详解】解:∵(),∴,∴当时,由得,则在上单调递减,在上单调递增,所以是极小值,∴只需,即.令,则,∴函数在上单调递增.∵,∴;当时,,函数在上单调递减,∵,,函数在上有且只有一个零点,∴的值是1或0.故选:C【点睛】本题考查利用导数研究函数的零点问题,零点存在性定理的应用,属于中档题.11.B【解析】
作出不等式对应的平面区域,利用线性规划的知识,利用的几何意义即可得到结论.【详解】不等式组作出可行域如图:,,,的几何意义是动点到的斜率,由图象可知的斜率为1,的斜率为:,则的取值范围是:,,.故选:.【点睛】本题主要考查线性规划的应用,根据目标函数的几何意义结合斜率公式是解决本题的关键.12.D【解析】
确定点为外心,代入化简得到,,再根据计算得到答案.【详解】由可知,点为外心,则,,又,所以①因为,②联立方程①②可得,,,因为,所以,即.故选:【点睛】本题考查了向量模长的计算,意在考查学生的计算能力.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
设直线l与函数及的图象分别相切于,,因为,所以函数的图象在点处的切线方程为,即,因为,所以函数的图象在点处的切线方程为,即,因为存在直线l与函数及的图象都相切,所以,所以,令,设,则,当时,,函数单调递减;当时,,函数单调递增,所以,所以实数的最小值为.14.【解析】
利用两角和的正切公式结合可得出的方程,即可求出的值,然后利用二倍角的正、余弦公式结合弦化切思想求出和的值,进而利用两角差的余弦公式求出的值.【详解】,,,.故答案为:;.【点睛】本题主要考查三角函数值的计算,考查两角和的正切公式、两角差的余弦公式、二倍角的正弦公式、余弦公式以及弦化切思想的应用,难度不大.15.30【解析】
先将问题转化为二项式的系数问题,利用二项展开式的通项公式求出展开式的第项,令的指数分别等于2,4,求出特定项的系数.【详解】由题可得:展开式中的系数等于二项式展开式中的指数为2和4时的系数之和,由于二项式的通项公式为,令,得展开式的的系数为,令,得展开式的的系数为,所以展开式中的系数,故答案为30.【点睛】本题考查利用二项式展开式的通项公式解决二项展开式的特定项的问题,考查学生的转化能力,属于基础题.16.【解析】
根据二项展开式定理,求出含的系数和含的系数,相乘即可.【详解】的展开式中,所求项为:,的系数为.
故答案为:.【点睛】本题考查二项展开式定理的应用,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(2)【解析】
(1)根据正弦定理化简等式可得,即;(2)根据题意,利用余弦定理可得,再表示出,表示出四边形,进而可得最值.【详解】(1),由正弦定理得:在中,,则,即,,即.(2)在中,又,则为等边三角形,又,-当时,四边形的面积取最大值,最大值为.【点睛】本题主要考查了正弦定理,余弦定理,三角形面积公式的应用,属于基础题.18.详见解析【解析】
选择①,利用正弦定理求得,利用余弦定理求得,再计算边上的高.选择②,利用正弦定理得出,由余弦定理求出,再求边上的高.选择③,利用余弦定理列方程求出,再计算边上的高.【详解】选择①,在中,由正弦定理得,即,解得;由余弦定理得,即,化简得,解得或(舍去);所以边上的高为.选择②,在中,由正弦定理得,又因为,所以,即;由余弦定理得,即,化简得,解得或(舍去);所以边上的高为.选择③,在中,由,得;由余弦定理得,即,化简得,解得或(舍去);所以边上的高为.【点睛】本小题主要考查真闲的了、余弦定理解三角形,属于中档题.19.见解析【解析】试题分析:把不等式的左边写成形式,利用柯西不等式即证.试题解析:证明:∵,又,∴考点:柯西不等式20.(1)(2)【解析】
(1)判断公比不为1,运用等比数列的求和公式,解方程可得公比,进而得到所求通项公式;(2)求得,运用数列的错位相减法求和,以及等比数列的求和公式,计算可得所求和.【详解】解:(1)设公比为正数的等比数列的前项和为,且,,可得时,,不成立;当时,,即,解得(舍去),则;(2),前项和,,两式相减可得,化简可得.【点睛】本题考查等比数列的通项公式和求和公式的运用,考查数列的错位相减法求和,考查方程思想和运算能力,属于中档题.21.(1);(2),或,.【解析】
(1)利用正弦定理,转化原式为,结合,可得,即得解;(2)由余弦定理,结合题中数据,可得解【详解】(1)由及正弦定理得.因为,所以,代入上式并化简得.由于,所以.又,故.(2)因为,,,由余弦定理得即,所以.而,所以,为一元二次方程的两根.所以,或,.【点睛】本题考查了正弦定理,余弦定理的综合应用,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.22.(1).(2).【解析】分析:(1)直接建立空间直角坐标系,然
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电力电子技术知到智慧树章节测试课后答案2024年秋哈尔滨职业技术大学
- 2024年设备租赁担保协议书3篇
- 地下工程测量学知到智慧树章节测试课后答案2024年秋山东科技大学
- 2025年度灭鼠、蚊、蝇、蟑螂四害服务合同(含应急预案)3篇
- 外出考察培训方案
- 2025版酒店装修工程后期维护合同范本3篇
- 2024房屋拆迁安置补偿协议书
- 2024年高品质内墙腻子施工与质量控制合同3篇
- 二零二五年度公路货运绿色物流技术创新合同3篇
- 2024文化艺术品交易拍卖合同
- 《地震灾害及其防治》课件
- 2024年版电商平台入驻商家服务与销售分成合同
- 蜜雪冰城合同范例
- 小红书种草营销师(初级)认证考试真题试题库(含答案)
- LPG液化气充装站介质分析操作规程 202412
- 养老院环境卫生保洁方案
- 中学学校装修改造工程施工组织设计方案
- 2024年WPS计算机二级考试题库350题(含答案)
- 2024年5G网络覆盖工程分包合同
- 2025届北京市海淀区交大附中高一物理第一学期期末复习检测试题含解析
- 天津市武清区2024-2025学年九年级上学期11月期中物理试题(无答案)
评论
0/150
提交评论