版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022高考数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知点是抛物线的对称轴与准线的交点,点为抛物线的焦点,点在抛物线上且满足,若取得最大值时,点恰好在以为焦点的椭圆上,则椭圆的离心率为()A. B. C. D.2.某几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.3.音乐,是用声音来展现美,给人以听觉上的享受,熔铸人们的美学趣味.著名数学家傅立叶研究了乐声的本质,他证明了所有的乐声都能用数学表达式来描述,它们是一些形如的简单正弦函数的和,其中频率最低的一项是基本音,其余的为泛音.由乐声的数学表达式可知,所有泛音的频率都是基本音频率的整数倍,称为基本音的谐波.下列函数中不能与函数构成乐音的是()A. B. C. D.4.如图,四边形为平行四边形,为中点,为的三等分点(靠近)若,则的值为()A. B. C. D.5.已知等比数列的各项均为正数,设其前n项和,若(),则()A.30 B. C. D.626.设等差数列的前项和为,若,则()A.10 B.9 C.8 D.77.“”是“函数的图象关于直线对称”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术.得诀自诩无所阻,额上坟起终不悟.”在这里,我们称形如以下形式的等式具有“穿墙术”:,,,,则按照以上规律,若具有“穿墙术”,则()A.48 B.63 C.99 D.1209.圆心为且和轴相切的圆的方程是()A. B.C. D.10.阅读下侧程序框图,为使输出的数据为31,则①处应填的数字为A.4 B.5 C.6 D.711.已知棱锥的三视图如图所示,其中俯视图是等腰直角三角形,则该三棱锥的四个面中,最大面积为()A. B. C. D.12.如图所示的程序框图,若输入,,则输出的结果是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数列的前项和且,设,则的值等于_______________.14.如图是一个算法的伪代码,运行后输出的值为___________.15.《九章算术》第七章“盈不足”中第一题:“今有共买物,人出八,盈三钱;人出七,不足四,问人数物价各几何?”借用我们现在的说法可以表述为:有几个人合买一件物品,每人出8元,则付完钱后还多3元;若每人出7元,则还差4元才够付款.问他们的人数和物品价格?答:一共有_____人;所合买的物品价格为_______元.16.两光滑的曲线相切,那么它们在公共点处的切线方向相同.如图所示,一列圆(an>0,rn>0,n=1,2…)逐个外切,且均与曲线y=x2相切,若r1=1,则a1=___,rn=______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数,().(1)若曲线在点处的切线方程为,求实数a、m的值;(2)若对任意恒成立,求实数a的取值范围;(3)关于x的方程能否有三个不同的实根?证明你的结论.18.(12分)如图,在四棱柱中,底面是正方形,平面平面,,.过顶点,的平面与棱,分别交于,两点.(Ⅰ)求证:;(Ⅱ)求证:四边形是平行四边形;(Ⅲ)若,试判断二面角的大小能否为?说明理由.19.(12分)如图是圆的直径,垂直于圆所在的平面,为圆周上不同于的任意一点(1)求证:平面平面;(2)设为的中点,为上的动点(不与重合)求二面角的正切值的最小值20.(12分)已知函数,.(1)当x≥0时,f(x)≤h(x)恒成立,求a的取值范围;(2)当x<0时,研究函数F(x)=h(x)﹣g(x)的零点个数;(3)求证:(参考数据:ln1.1≈0.0953).21.(12分)在正三棱柱ABCA1B1C1中,已知AB=1,AA1=2,E,F,G分别是棱AA1,AC和A1C1的中点,以为正交基底,建立如图所示的空间直角坐标系F-xyz.(1)求异面直线AC与BE所成角的余弦值;(2)求二面角F-BC1-C的余弦值.22.(10分)已知函数.(1)若,且,求证:;(2)若时,恒有,求的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【解析】
设,利用两点间的距离公式求出的表达式,结合基本不等式的性质求出的最大值时的点坐标,结合椭圆的定义以及椭圆的离心率公式求解即可.【详解】设,因为是抛物线的对称轴与准线的交点,点为抛物线的焦点,所以,则,当时,,当时,,当且仅当时取等号,此时,,点在以为焦点的椭圆上,,由椭圆的定义得,所以椭圆的离心率,故选B.【点睛】本题主要考查椭圆的定义及离心率,属于难题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解.2.A【解析】
利用已知条件画出几何体的直观图,然后求解几何体的体积.【详解】几何体的三视图的直观图如图所示,则该几何体的体积为:.故选:.【点睛】本题考查三视图求解几何体的体积,判断几何体的形状是解题的关键.3.C【解析】
由基本音的谐波的定义可得,利用可得,即可判断选项.【详解】由题,所有泛音的频率都是基本音频率的整数倍,称为基本音的谐波,由,可知若,则必有,故选:C【点睛】本题考查三角函数的周期与频率,考查理解分析能力.4.D【解析】
使用不同方法用表示出,结合平面向量的基本定理列出方程解出.【详解】解:,又解得,所以故选:D【点睛】本题考查了平面向量的基本定理及其意义,属于基础题.5.B【解析】
根据,分别令,结合等比数列的通项公式,得到关于首项和公比的方程组,解方程组求出首项和公式,最后利用等比数列前n项和公式进行求解即可.【详解】设等比数列的公比为,由题意可知中:.由,分别令,可得、,由等比数列的通项公式可得:,因此.故选:B【点睛】本题考查了等比数列的通项公式和前n项和公式的应用,考查了数学运算能力.6.B【解析】
根据题意,解得,,得到答案.【详解】,解得,,故.故选:.【点睛】本题考查了等差数列的求和,意在考查学生的计算能力.7.A【解析】
先求解函数的图象关于直线对称的等价条件,得到,分析即得解.【详解】若函数的图象关于直线对称,则,解得,故“”是“函数的图象关于直线对称”的充分不必要条件.故选:A【点睛】本题考查了充分不必要条件的判断,考查了学生逻辑推理,概念理解,数学运算的能力,属于基础题.8.C【解析】
观察规律得根号内分母为分子的平方减1,从而求出n.【详解】解:观察各式发现规律,根号内分母为分子的平方减1所以故选:C.【点睛】本题考查了归纳推理,发现总结各式规律是关键,属于基础题.9.A【解析】
求出所求圆的半径,可得出所求圆的标准方程.【详解】圆心为且和轴相切的圆的半径为,因此,所求圆的方程为.故选:A.【点睛】本题考查圆的方程的求解,一般求出圆的圆心和半径,考查计算能力,属于基础题.10.B【解析】考点:程序框图.分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环求S的值,我们用表格列出程序运行过程中各变量的值的变化情况,不难给出答案.解:程序在运行过程中各变量的值如下表示:Si是否继续循环循环前11/第一圈32是第二圈73是第三圈154是第四圈315否故最后当i<5时退出,故选B.11.B【解析】
由三视图可知,该三棱锥如图,其中底面是等腰直角三角形,平面,结合三视图求出每个面的面积即可.【详解】由三视图可知,该三棱锥如图所示:其中底面是等腰直角三角形,平面,由三视图知,因为,,所以,所以,因为为等边三角形,所以,所以该三棱锥的四个面中,最大面积为.故选:B【点睛】本题考查三视图还原几何体并求其面积;考查空间想象能力和运算求解能力;三视图正确还原几何体是求解本题的关键;属于中档题、常考题型.12.B【解析】
列举出循环的每一步,可得出输出结果.【详解】,,不成立,,;不成立,,;不成立,,;成立,输出的值为.故选:B.【点睛】本题考查利用程序框图计算输出结果,一般要将算法的每一步列举出来,考查计算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.7【解析】
根据题意,当时,,可得,进而得数列为等比数列,再计算可得,进而可得结论.【详解】由题意,当时,,又,解得,当时,由,所以,,即,故数列是以为首项,为公比的等比数列,故,又,,所以,.故答案为:.【点睛】本题考查了数列递推关系、函数求值,考查了推理能力与计算能力,计算得是解决本题的关键,属于中档题.14.13【解析】根据题意得到:a=0,b=1,i=2A=1,b=2,i=4,A=3,b=5,i=6,A=8,b=13,i=8不满足条件,故得到此时输出的b值为13.故答案为13.15.753【解析】
根据物品价格不变,可设共有x人,列出方程求解即可【详解】设共有人,由题意知,解得,可知商品价格为53元.即共有7人,商品价格为53元.【点睛】本题主要考查了数学文化及一元一次方程的应用,属于中档题.16.【解析】
第一空:将圆与联立,利用计算即可;第二空:找到两外切的圆的圆心与半径的关系,再将与联立,得到,与结合可得为等差数列,进而可得.【详解】当r1=1时,圆,与联立消去得,则,解得;由图可知当时,①,将与联立消去得,则,整理得,代入①得,整理得,则.故答案为:;.【点睛】本题是抛物线与圆的关系背景下的数列题,关键是找到圆心和半径的关系,建立递推式,由递推式求通项公式,综合性较强,是一道难度较大的题目.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1),;(2);(3)不能,证明见解析【解析】
(1)求出,结合导数的几何意义即可求解;(2)构造,则原题等价于对任意恒成立,即时,,利用导数求最值即可,值得注意的是,可以通过代特殊值,由求出的范围,再研究该范围下单调性;(3)构造并进行求导,研究单调性,结合函数零点存在性定理证明即可.【详解】(1),,曲线在点处的切线方程为,,解得.(2)记,整理得,由题知,对任意恒成立,对任意恒成立,即时,,,解得,当时,对任意,,,,,即在单调递增,此时,实数的取值范围为.(3)关于的方程不可能有三个不同的实根,以下给出证明:记,,则关于的方程有三个不同的实根,等价于函数有三个零点,,当时,,记,则,在单调递增,,即,,在单调递增,至多有一个零点;当时,记,则,在单调递增,即在单调递增,至多有一个零点,则至多有两个单调区间,至多有两个零点.因此,不可能有三个零点.关于的方程不可能有三个不同的实根.【点睛】本题考查了导数几何意义的应用、利用导数研究函数单调性以及函数的零点存在性定理,考查了转化与化归的数学思想,属于难题.18.(1)证明见解析;(2)证明见解析;(3)不能为.【解析】
(1)由平面平面,可得平面,从而证明;(2)由平面与平面没有交点,可得与不相交,又与共面,所以,同理可证,得证;(3)作交于点,延长交于点,连接,根据三垂线定理,确定二面角的平面角,若,,由大角对大边知,两者矛盾,故二面角的大小不能为.【详解】(1)由平面平面,平面平面,且,所以平面,又平面,所以;(2)依题意都在平面上,因此平面,平面,又平面,平面,平面与平面平行,即两个平面没有交点,则与不相交,又与共面,所以,同理可证,所以四边形是平行四边形;(3)不能.如图,作交于点,延长交于点,连接,由,,,所以平面,则平面,又,根据三垂线定理,得到,所以是二面角的平面角,若,则是等腰直角三角形,,又,所以中,由大角对大边知,所以,这与上面相矛盾,所以二面角的大小不能为.【点睛】本题考查了立体几何中的线线平行和垂直的判定问题,和二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,属中档题.19.(1)见解析(2)【解析】
(1)推导出,,从而平面,由面面垂直的判定定理即可得证.(2)过作,以为坐标原点,建立如图所示空间坐标系,设,利用空间向量法表示出二面角的余弦值,当余弦值取得最大时,正切值求得最小值;【详解】(1)因为,面,,平面,平面,平面,又平面,平面平面;(2)过作,以为坐标原点,建立如图所示空间坐标系,则,设,则平面的一个法向量为设平面的一个法向量为则,即,令,如图二面角的平面角为锐角,设二面角为,则,时取得最大值,最大值为,则最小值为【点睛】本题考查面面垂直的证明,利用空间向量法解决立体几何问题,属于中档题.20.(1);(2)见解析;(3)见解析【解析】
(1)令H(x)=h(x)﹣f(x)=ex﹣1﹣aln(x+1)(x≥0),求得导数,讨论a>1和a≤1,判断导数的符号,由恒成立思想可得a的范围;(2)求得F(x)=h(x)﹣g(x)的导数和二阶导数,判断F'(x)的单调性,讨论a≤﹣1,a>﹣1,F(x)的单调性和零点个数;(3)由(1)知,当a=1时,ex>1+ln(x+1)对x>0恒成立,令;由(2)知,当a=﹣1时,对x<0恒成立,令,结合条件,即可得证.【详解】(Ⅰ)解:令H(x)=h(x)﹣f(x)=ex﹣1﹣aln(x+1)(x≥0),则,①若a≤1,则,H'(x)≥0,H(x)在[0,+∞)递增,H(x)≥H(0)=0,即f(x)≤h(x)在[0,+∞)恒成立,满足,所以a≤1;②若a>1,H′(x)=ex﹣在[0,+∞)递增,H'(x)≥H'(0)=1﹣a,且1﹣a<0,且x→+∞时,H'(x)→+∞,则∃x0∈(0,+∞),使H'(x0)=0进而H(x)在[0,x0)递减,在(x0,+∞)递增,所以当x∈(0,x0)时H(x)<H(0)=0,即当x∈(0,x0)时,f(x)>h(x),不满足题意,舍去;综合①,②知a的取值范围为(﹣∞,1].(Ⅱ)解:依题意得,则F'(x)=ex﹣x2+a,则F''(x)=ex﹣2x>0在(﹣∞,0)上恒成立,故F'(x)=ex﹣x2+a在(﹣∞,0)递增,所以F'(x)<F'(0)=1+a,且x→﹣∞时,F'(x)→﹣∞;①若1+a≤0,即a≤﹣1,则F'(x)<F'(0)=1+a≤0,故F(x)在(﹣∞,0)递减,所以F(x)>F(0)=0,F(x)在(﹣∞,0)无零点;②若1+a>0,即a>﹣1,则使,进而F(x)在递减,在递增,,且x→﹣∞时,,F(x)在上有一个零点,在无零点,故F(x)在(﹣∞,0)有一个零点.综合①②,当a≤﹣1时无零点;当a>﹣1时有一个零点.(Ⅲ)证明:由(Ⅰ)知,当a=1时,ex>1+ln(x+1)对x>0恒成立,令,则即;由(Ⅱ)知,当a=﹣1时,对x<0恒成立,令,则,所以;故有.【点睛】本题考查导数的运用:求单调区间,考查函数零点存在定理的运用,考查分类讨论思想方法,以及运算能力和推理能力,属于难题.对于函数的零点问题,它和方程的根的问题,和两个函数的交点问题是同一个问题,可以互相转化;在转化为两个函数交点时,如果是一个常函数一个含自变量的函数,注意让含有自变量的函数式子尽量简单一些.21.(1).(2).【解析】
(1)先根据空间直角坐标系,求得向量和向量的坐标,再利用线线角的向量方法求解.(2)分别求得平面BFC1的一个法向量和平面BCC1的一个法向量,再利用面面角的向量方法求解.【详解】规范解答(1)因为AB=1,AA1=2,则F(0,0,0),A,C,B,E,所以=(-1,0,0),=记异面直线AC和BE所成角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 简单绿化工程合同范本
- 关于购销的合同范本2篇
- 正规购房合同样本
- 山地承包合同书2篇
- 卫生间改造装修合同合同范本
- 全新订货合同完整版
- 2024年度高档住宅区安全防范系统合同3篇
- 2024年度工程维护与保修合同3篇
- 鸡蛋生产的产业链分析
- 园林绿化工程设计与咨询服务合同(2024年)
- 绩效管理外文翻译外文文献中英翻译-绩效管理外文文献
- 牛养殖场标准化红牛养殖场建设项目施工图纸
- 掼蛋实战技巧100例
- 影子老师-陪读协议-模板
- 教学课件 第三讲-国际体系及其变革趋势
- Unit+1+Knowing+me,+knowing+you+Developing+ideas课件【知识精讲精研】高中英语外研版(2019)必修第三册
- T SISTB002-2020 智慧楼宇评价指标体系3.0
- 例谈思政教育在中学数学中的融合与实施 论文
- 初中数学课件《切割线定理》
- 相似品管理规范
- 老版入团志愿书表格(空白)
评论
0/150
提交评论