2021-2022学年浙江省“温州八校”高三下学期第五次调研考试数学试题含解析_第1页
2021-2022学年浙江省“温州八校”高三下学期第五次调研考试数学试题含解析_第2页
2021-2022学年浙江省“温州八校”高三下学期第五次调研考试数学试题含解析_第3页
2021-2022学年浙江省“温州八校”高三下学期第五次调研考试数学试题含解析_第4页
2021-2022学年浙江省“温州八校”高三下学期第五次调研考试数学试题含解析_第5页
免费预览已结束,剩余14页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022高考数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数()的部分图象如图所示,且,则的最小值为()A. B.C. D.2.如图是正方体截去一个四棱锥后的得到的几何体的三视图,则该几何体的体积是()A. B. C. D.3.函数的最大值为,最小正周期为,则有序数对为()A. B. C. D.4.已知等差数列的前n项和为,且,则()A.4 B.8 C.16 D.25.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,用现代式子表示即为:在中,角所对的边分别为,则的面积.根据此公式,若,且,则的面积为()A. B. C. D.6.已知集合,集合,则().A. B.C. D.7.设,为非零向量,则“存在正数,使得”是“”的()A.既不充分也不必要条件 B.必要不充分条件C.充分必要条件 D.充分不必要条件8.下列命题是真命题的是()A.若平面,,,满足,,则;B.命题:,,则:,;C.“命题为真”是“命题为真”的充分不必要条件;D.命题“若,则”的逆否命题为:“若,则”.9.设,则,则()A. B. C. D.10.函数的图象大致为A. B. C. D.11.M、N是曲线y=πsinx与曲线y=πcosx的两个不同的交点,则|MN|的最小值为()A.π B.π C.π D.2π12.为了得到函数的图象,只需把函数的图象上所有的点()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度二、填空题:本题共4小题,每小题5分,共20分。13.已知函数f(x)=axlnx﹣bx(a,b∈R)在点(e,f(e))处的切线方程为y=3x﹣e,则a+b=_____.14.已知直线与圆心为的圆相交于两点,且,则实数的值为_________.15.设、满足约束条件,若的最小值是,则的值为__________.16.如图是九位评委打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均分为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知曲线的参数方程为(为参数).以直角坐标系的原点为极点,轴的正半轴为极轴建立坐标系,曲线的极坐标方程为.(1)求的普通方程和的直角坐标方程;(2)若过点的直线与交于,两点,与交于,两点,求的取值范围.18.(12分)某客户准备在家中安装一套净水系统,该系统为二级过滤,使用寿命为十年如图所示两个二级过滤器采用并联安装,再与一级过滤器串联安装.其中每一级过滤都由核心部件滤芯来实现在使用过程中,一级滤芯和二级滤芯都需要不定期更换(每个滤芯是否需要更换相互独立).若客户在安装净水系统的同时购买滤芯,则一级滤芯每个160元,二级滤芯每个80元.若客户在使用过程中单独购买滤芯则一级滤芯每个400元,二级滤芯每个200元.现需决策安装净水系统的同时购买滤芯的数量,为此参考了根据100套该款净水系统在十年使用期内更换滤芯的相关数据制成的图表,其中表1是根据100个一级过滤器更换的滤芯个数制成的频数分布表,图2是根据200个二级过滤器更换的滤芯个数制成的条形图.表1:一级滤芯更换频数分布表一级滤芯更换的个数89频数6040图2:二级滤芯更换频数条形图以100个一级过滤器更换滤芯的频率代替1个一级过滤器更换滤芯发生的概率,以200个二级过滤器更换滤芯的频率代替1个二级过滤器更换滤芯发生的概率.(1)求一套净水系统在使用期内需要更换的各级滤芯总个数恰好为16的概率;(2)记表示该客户的净水系统在使用期内需要更换的二级滤芯总数,求的分布列及数学期望;(3)记分别表示该客户在安装净水系统的同时购买的一级滤芯和二级滤芯的个数.若,且,以该客户的净水系统在使用期内购买各级滤芯所需总费用的期望值为决策依据,试确定的值.19.(12分)在平面直角坐标系中,以原点为极点,x轴正半轴为极轴建立极坐标系,并在两坐标系中取相同的长度单位.已知曲线C的极坐标方程为ρ=2cosθ,直线l的参数方程为(t为参数,α为直线的倾斜角).(1)写出直线l的普通方程和曲线C的直角坐标方程;(2)若直线l与曲线C有唯一的公共点,求角α的大小.20.(12分)心形线是由一个圆上的一个定点,当该圆在绕着与其相切且半径相同的另外一个圆周上滚动时,这个定点的轨迹,因其形状像心形而得名,在极坐标系中,方程()表示的曲线就是一条心形线,如图,以极轴所在的直线为轴,极点为坐标原点的直角坐标系中.已知曲线的参数方程为(为参数).(1)求曲线的极坐标方程;(2)若曲线与相交于、、三点,求线段的长.21.(12分)在平面直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.(1)求曲线的普通方程和直线的直角坐标方程;(2)设点,若直线与曲线相交于、两点,求的值22.(10分)一酒企为扩大生产规模,决定新建一个底面为长方形的室内发酵馆,发酵馆内有一个无盖长方体发酵池,其底面为长方形(如图所示),其中.结合现有的生产规模,设定修建的发酵池容积为450米,深2米.若池底和池壁每平方米的造价分别为200元和150元,发酵池造价总费用不超过65400元(1)求发酵池边长的范围;(2)在建发酵馆时,发酵池的四周要分别留出两条宽为4米和米的走道(为常数).问:发酵池的边长如何设计,可使得发酵馆占地面积最小.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】

是函数的零点,根据五点法求出图中零点及轴左边第一个零点可得.【详解】由题意,,∴函数在轴右边的第一个零点为,在轴左边第一个零点是,∴的最小值是.故选:A.【点睛】本题考查三角函数的周期性,考查函数的对称性.函数的零点就是其图象对称中心的横坐标.2.C【解析】

根据三视图作出几何体的直观图,结合三视图的数据可求得几何体的体积.【详解】根据三视图还原几何体的直观图如下图所示:由图可知,该几何体是在棱长为的正方体中截去四棱锥所形成的几何体,该几何体的体积为.故选:C.【点睛】本题考查利用三视图计算几何体的体积,考查空间想象能力与计算能力,属于基础题.3.B【解析】函数(为辅助角)∴函数的最大值为,最小正周期为故选B4.A【解析】

利用等差的求和公式和等差数列的性质即可求得.【详解】.故选:.【点睛】本题考查等差数列的求和公式和等差数列的性质,考查基本量的计算,难度容易.5.A【解析】

根据,利用正弦定理边化为角得,整理为,根据,得,再由余弦定理得,又,代入公式求解.【详解】由得,即,即,因为,所以,由余弦定理,所以,由的面积公式得故选:A【点睛】本题主要考查正弦定理和余弦定理以及类比推理,还考查了运算求解的能力,属于中档题.6.A【解析】

算出集合A、B及,再求补集即可.【详解】由,得,所以,又,所以,故或.故选:A.【点睛】本题考查集合的交集、补集运算,考查学生的基本运算能力,是一道基础题.7.D【解析】

充分性中,由向量数乘的几何意义得,再由数量积运算即可说明成立;必要性中,由数量积运算可得,不一定有正数,使得,所以不成立,即可得答案.【详解】充分性:若存在正数,使得,则,,得证;必要性:若,则,不一定有正数,使得,故不成立;所以是充分不必要条件故选:D【点睛】本题考查平面向量数量积的运算,向量数乘的几何意义,还考查了充分必要条件的判定,属于简单题.8.D【解析】

根据面面关系判断A;根据否定的定义判断B;根据充分条件,必要条件的定义判断C;根据逆否命题的定义判断D.【详解】若平面,,,满足,,则可能相交,故A错误;命题“:,”的否定为:,,故B错误;为真,说明至少一个为真命题,则不能推出为真;为真,说明都为真命题,则为真,所以“命题为真”是“命题为真”的必要不充分条件,故C错误;命题“若,则”的逆否命题为:“若,则”,故D正确;故选D【点睛】本题主要考查了判断必要不充分条件,写出命题的逆否命题等,属于中档题.9.A【解析】

根据换底公式可得,再化简,比较的大小,即得答案.【详解】,,.,显然.,即,,即.综上,.故选:.【点睛】本题考查换底公式和对数的运算,属于中档题.10.D【解析】

由题可得函数的定义域为,因为,所以函数为奇函数,排除选项B;又,,所以排除选项A、C,故选D.11.C【解析】

两函数的图象如图所示,则图中|MN|最小,设M(x1,y1),N(x2,y2),则x1=,x2=π,|x1-x2|=π,|y1-y2|=|πsinx1-πcosx2|=π+π=π,∴|MN|==π.故选C.12.D【解析】

通过变形,通过“左加右减”即可得到答案.【详解】根据题意,故只需把函数的图象上所有的点向右平移个单位长度可得到函数的图象,故答案为D.【点睛】本题主要考查三角函数的平移变换,难度不大.二、填空题:本题共4小题,每小题5分,共20分。13.0【解析】

由题意,列方程组可求,即求.【详解】∵在点处的切线方程为,,代入得①.又②.联立①②解得:..故答案为:0.【点睛】本题考查导数的几何意义,属于基础题.14.0或6【解析】

计算得到圆心,半径,根据得到,利用圆心到直线的距离公式解得答案.【详解】,即,圆心,半径.,故圆心到直线的距离为,即,故或.故答案为:或.【点睛】本题考查了根据直线和圆的位置关系求参数,意在考查学生的计算能力和转化能力。15.【解析】

画出满足条件的平面区域,求出交点的坐标,由得,显然直线过时,最小,代入求出的值即可.【详解】作出不等式组所表示的可行域如下图所示:联立,解得,则点.由得,显然当直线过时,该直线轴上的截距最小,此时最小,,解得.故答案为:.【点睛】本题考查了简单的线性规划问题,考查数形结合思想,是一道中档题.16.1【解析】

写出茎叶图对应的所有的数,去掉最高分,最低分,再求平均分.【详解】解:所有的数为:77,78,82,84,84,86,88,93,94,共9个数,去掉最高分,最低分,剩下78,82,84,84,86,88,93,共7个数,平均分为,故答案为1.【点睛】本题考查茎叶图及平均数的计算,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)见解析;(2).【解析】试题分析:(1)利用平方法消去参数,即可得到的普通方程,两边同乘以利用即可得的直角坐标方程;(2)设直线的参数方程为(为参数),代入,利用韦达定理、直线参数方程的几何意义以及三角函数的有界性可得结果.试题解析:(1)曲线的普通方程为,曲线的直角坐标方程为;(2)设直线的参数方程为(为参数)又直线与曲线:存在两个交点,因此.联立直线与曲线:可得则联立直线与曲线:可得,则即18.(1)0.024;(2)分布列见解析,;(3)【解析】

(1)由题意可知,若一套净水系统在使用期内需要更换的各级滤芯总个数恰好为16,则该套净水系统中一个一级过滤器需要更换8个滤芯,两个二级过滤器均需要更换4个滤芯,而由一级滤芯更换频数分布表和二级滤芯更换频数条形图可知,一级过滤器需要更换8个滤芯的概率为0.6,二级过滤器需要更换4个滤芯的概率为0.2,再由乘法原理可求出概率;(2)由二级滤芯更换频数条形图可知,一个二级过滤器需要更换滤芯的个数为4,5,6的概率分别为0.2,0.4,0.4,而的可能取值为8,9,10,11,12,然后求出概率,可得到的分布列及数学期望;(3)由,且,可知若,则,或若,则,再分别计算两种情况下的所需总费用的期望值比较大小即可.【详解】(1)由题意知,若一套净水系统在使用期内需要更换的各级滤芯总个数恰好为16,则该套净水系统中一个一级过滤器需要更换8个滤芯,两个二级过滤器均需要更换4个滤芯,设“一套净水系统在使用期内需要更换的各级滤芯总个数恰好为16”为事件,因为一个一级过滤器需要更换8个滤芯的概率为0.6,二级过滤器需要更换4个滤芯的概率为0.2,所以.(2)由柱状图知,一个二级过滤器需要更换滤芯的个数为4,5,6的概率分别为0.2,0.4,0.4,由题意的可能取值为8,9,10,11,12,从而,,.所以的分布列为891011120.040.160.320.320.16(个).或用分数表示也可以为89101112(个).(3)解法一:记表示该客户的净水系统在使用期内购买各级滤芯所需总费用(单位:元)因为,且,1°若,则,(元);2°若,则,(元).因为,故选择方案:.解法二:记分别表示该客户的净水系统在使用期内购买一级滤芯和二级滤芯所需费用(单位:元)1°若,则,的分布列为128016800.60.488010800.840.16该客户的净水系统在使用期内购买的各级滤芯所需总费用为(元);2°若,则,的分布列为800100012000.520.320.16(元).因为所以选择方案:.【点睛】此题考查离散型随机变量的分布列、数学期望的求法及应用,考查古典概型,考查运算求解能力,属于中档题.19.(1)当时,直线l方程为x=-1;当时,直线l方程为y=(x+1)tanα;x2+y2=2x(2)或.【解析】

(1)对直线l的倾斜角分类讨论,消去参数即可求出其普通方程;由,即可求出曲线C的直角坐标方程;(2)将直线l的参数方程代入曲线C的直角坐标方程,根据条件Δ=0,即可求解.【详解】(1)当时,直线l的普通方程为x=-1;当时,消去参数得直线l的普通方程为y=(x+1)tanα.由ρ=2cosθ,得ρ2=2ρcosθ,所以x2+y2=2x,即为曲线C的直角坐标方程.(2)把x=-1+tcosα,y=tsinα代入x2+y2=2x,整理得t2-4tcosα+3=0.由Δ=16cos2α-12=0,得cos2α=,所以cosα=或cosα=,故直线l的倾斜角α为或.【点睛】本题考查参数方程化普通方程,极坐标方程化直角坐标方程,考查直线与曲线的关系,属于中档题.20.(1)();(2).【解析】

(1)化简得到直线方程为,再利用极坐标公式计算得到答案.(2)联立方程计算得到,,计算得到答案.【详解】(1)由消得,即,是过原点且倾斜角为的直线,∴的极坐标方程为().(2)由得,∴,由得∴,∴.【点睛】本题考查了参数方程,极坐标方程,意在考查

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论