版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
简单线性规划.则用不等式可表示为:解:此平面区域在x-y=0的右下方,x-y≥0它又在x+2y-4=0的左下方,x+2y-4≤0它还在y+2=0的上方,y+2≥0Yox4-2x-y=0y+2=0x+2y-4=021,求由三直线x-y=0;x+2y-4=0及y+2=0所围成的平面区域所表示的不等式。.应该注意的几个问题:1、若不等式中不含0,则边界应画成虚线,2、画图时应非常准确,否则将得不到正确结果。3、熟记“直线定界、特殊点定域”方法的内涵。否则应画成实线。.xyo可行域上的最优解第二节.一.复习回顾1.在同一坐标系上作出下列直线:2x+y=0;2x+y=1;2x+y=-3;2x+y=4;2x+y=7xYo.2.作出下列不等式组的所表示的平面区域.55x=1x-4y+3=03x+5y-25=01ABCC:(1.00,4.40)A:(5.00,2.00)B:(1.00,1.00)Oxy问题1:x有无最大(小)值?问题2:y有无最大(小)值?问题3:2x+y有无最大(小)值?.二.提出问题把上面两个问题综合起来:设z=2x+y,求满足时,求z的最大值和最小值..55x=1x-4y+3=03x+5y-25=01ABCC:(1.00,4.40)A:(5.00,2.00)B:(1.00,1.00)Oxy直线L越往右平移,t随之增大.以经过点A(5,2)的直线所对应的t值最大;经过点B(1,1)的直线所对应的t值最小..设z=2x+y,求满足时,求z的最大值和最小值.线性目标函数线性约束条件线性规划问题任何一个满足不等式组的(x,y)可行解可行域所有的最优解.有关概念由x,y的不等式(或方程)组成的不等式组称为x,y的约束条件。关于x,y的一次不等式或方程组成的不等式组称为x,y的线性约束条件。欲达到最大值或最小值所涉及的变量x,y的解析式称为目标函数。关于x,y的一次目标函数称为线性目标函数。求线性目标函数在线性约束条件下的最大值或最小值问题称为线性规划问题。满足线性约束条件的解(x,y)称为可行解。所有可行解组成的集合称为可行域。使目标函数取得最大值或最小值的可行解称为最优解。.三、课堂练习(1)已知求z=2x+y的最大值和最小值。.551Oxyy-x=0x+y-1=01-1y+1=0A(2,-1)B(-1,-1).练习2、已知求z=3x+5y的最大值和最小值。.551Oxy1-15x+3y=15X-5y=3y=x+1A(-2,-1)B(3/2,5/2).解线性规划问题的步骤:
(2)移:在线性目标函数所表示的一组平行线中,利用平移的方法找出与可行域有公共点且纵截距最大或最小的直线;
(3)求:通过解方程组求出最优解;
(4)答:作出答案。
(1)画:画出线性约束条件所表示的可行域;.一、引例:某工厂生产甲、乙两种产品,生产1t甲种产品需要A种原料4t、B种原料12t,产生的利润为2万元;生产1t乙种产品需要A种原料1t、B种原料9t,产生的利润为1万元。现有库存A种原料10t、B种原料60t,如何安排生产才能使利润最大?.几个结论:1、线性目标函数的最大(小)值一般在可行域的顶点处取得,也可能在边界处取得。2、求线性目标函数的最优解,要注意分析线性目标函数所表示的几何意义
——在y轴上的截距或其相反数。.A种原料B种原料利润甲种产品4122乙种产品19
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 足协工作总结
- 广东省湛江市2024−2025学年高二上学期10月月考 数学试题含答案
- 端午节体会(31篇)
- 湖北省武汉市(2024年-2025年小学五年级语文)人教版专题练习(上学期)试卷及答案
- 黑龙江绥化市(2024年-2025年小学五年级语文)人教版摸底考试((上下)学期)试卷及答案
- 高级办公自动化教案
- 非营利组织管理教案
- 无碱玻璃纤维短切丝征求意见稿
- 2024年广东省深圳市中考英语适应性试卷
- 上海市市辖区(2024年-2025年小学五年级语文)统编版竞赛题(下学期)试卷及答案
- 学校心理健康教育合作协议书
- 2024江苏省沿海开发集团限公司招聘23人(高频重点提升专题训练)共500题附带答案详解
- 湖北省危险废物监管物联网系统管理计划填报说明
- 大学生就业指南攻略课件
- 智能算力数据中心风险评估与应对措施
- Unit6ADayintheLife教学设计2024-2025学年人教版(2024)英语七年级上册
- 八年级数学上册第一学期期中综合测试卷(湘教版 2024年秋)
- 2024年个人劳务承包合同书
- 公司法教案第四章公司法律制度
- 知道网课智慧《睡眠医学(广州医科大学)》测试答案
- 如果历史是一群喵课件
评论
0/150
提交评论