浙江省嘉兴市2023-届第一学期期末检测高三数学试题(解析版)_第1页
浙江省嘉兴市2023-届第一学期期末检测高三数学试题(解析版)_第2页
浙江省嘉兴市2023-届第一学期期末检测高三数学试题(解析版)_第3页
浙江省嘉兴市2023-届第一学期期末检测高三数学试题(解析版)_第4页
浙江省嘉兴市2023-届第一学期期末检测高三数学试题(解析版)_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

嘉兴市2023-2023学年第一学期期末检测高三数学试题卷第Ⅰ卷一、选择题:本大题共10个小题,每小题4分,共40分.1.已知集合,,则A.B.C.D.【答案】D【解析】【分析】根据题干可知集合A,B,由集合的交集的概念得到结果.【详解】集合,,则.故答案为:D.【点睛】这个题目考查了集合的交集的求法,属于基础题.2.已知复数,(是虚数单位),则A.B.C.D.【答案】C【解析】【分析】根据复数的乘法运算得到结果.【详解】复数,,则=4+3i.故答案为:C.【点睛】本题考查了复数的乘法运算,是基础题.3.双曲线的离心率是A.B.C.D.【答案】B【解析】【分析】根据双曲线方程得到参数a,b,c的值,进而得到离心率.【详解】双曲线,.故答案为:B.【点睛】这个题目考查了双曲线的方程的应用,属于基础题。4.某几何体的三视图如图所示(单位:),则该几何体的体积(单位:)是A.B.54C.D.108【答案】A【解析】【分析】根据三视图得到原图,再由四棱锥体积公式得到结果.【详解】根据三视图得到原图是如上图的一个四棱锥反转之后的图,正确的图应是三角形VAD为底面,是底边为6,高为的等腰三角形,点V朝外,底面ABCD是竖直的,位于里面边长为6的正方形,且垂直于底面VAD.该几何体是四棱锥,体积为故答案为:A.【点睛】这个题目考查了由三视图还原几何体的应用,考查了四棱锥的体积的求法,思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.5.已知等比数列的各项均为正,且,,成等差数列,则数列的公比是A.B.2C.D.【答案】C【解析】【分析】根据题意得到由数列各项是正数,可得到首项和公比均为正,进而化简为,求解即可.【详解】根据,,成等差数列得到=,再根据数列是等比数列得到,因为等比数列的各项均为正,故得到解得或-2(舍去),故得到公比为.故答案为:C.【点睛】解决等差数列与等比数列的综合问题,关键是理清两个数列的关系:①如果同一数列中部分项成等差数列,部分项成等比数列,则要把成等差数列和成等比数列的项分别抽出来,研究这些项与序号之间的关系;②如果两个数列是通过运算综合在一起的,就要从分析运算入手,把两个数列分割开,再根据两个数列各自的特征进行求解.6.函数的大致图象是A.B.C.D.【答案】B【解析】【分析】根据函数解析式,可代入特殊点,进行排除.【详解】根据函数表达式,当x>2时,函数值大于0,可排除A选项,当x<-1时,函数值小于0故可排除C和D选项,进而得到B正确。故答案为:B.【点睛】这个题目考查了已知函数解析式,求函数图像的问题,这种题目一般可以代入特殊点,进行选项的排除,或者根据函数表达式得到函数的定义域,值域的问题,进行排除.7.已知直线,,则“”是“”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C【解析】【分析】先得出两直线平行的充要条件,根据小范围可推导出大范围,可得到答案.【详解】直线,,的充要条件是,当a=2时,化简后发现两直线是重合的,故舍去,最终a=-1.因此得到“”是“”的充分必要条件.故答案为:C.【点睛】判断充要条件的方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.8.已知随机变量的分布列如下,则的最大值是-10A.B.C.D.【答案】B【解析】【分析】根据分布列的性质得到b=a,再由均值的概念得到,由二次函数的性质得到结果即可.【详解】根据分布列的性质的到,所有的概率和为1,且每个概率都介于0和1之间,得到b-a=0,,根据公式得到化简得到,根据二次函数的性质得到函数最大值在轴处取,代入得到.故答案为:B.【点睛】这个题目考查了分布列的性质以及应用,分布列的概率和为1,每个概率值介于0和1之间,或者可以等于0或1,题型基础.9.已知长方体的底面为正方形,,,且,侧棱上一点满足,设异面直线与,与,与的所成角分别为,,,则A.B.C.D.【答案】A【解析】【分析】根据题意将异面直线平移到同一平面,再由余弦定理得到结果.【详解】根据题意将异面直线平移到同一平面中,如上图,显然,,,因为,异面直线与的夹角即角,根据三角形中的余弦定理得到,故,同理在三角形中利用余弦定理得到:,故,连接AC,则AC垂直于BD,CE垂直于BD,AC交CE于C点,故可得到BD垂直于面ACE,进而得到BD垂直于AE,而BD平行于.从而得到,故.故答案为:A.【点睛】这个题目考查了异面直线夹角的求法,一般是将异面直线平移到同一平面中,转化到三角形中进行计算,或者建立坐标系,求解两直线的方向向量,两个方向向量的夹角就是异面直线的夹角或其补角.10.已知向量,满足,,则的取值范围是A.B.C.[D.[【答案】D【解析】【分析】根据题干条件得到题目所表示的几何意义,根据椭圆的定义和几何意义得到结果.【详解】设点M,为平面中任意一点,点是关于原点对称的两个点,设,根据题意,根据椭圆的定义得到点M的轨迹是以为焦点的椭圆,方程为.,即.故答案为:D.【点睛】这个题目考查了向量的加法的几何意义,考查了解决向量问题的数形结合的方法,向量的两个作用:①载体作用:关键是利用向量的意义、作用脱去“向量外衣”,转化为我们熟悉的数学问题;②工具作用:利用向量可解决一些垂直、平行、夹角与距离问题.第Ⅱ卷二、填空题(本大题共7小题,多空题6分,单空题4分,共36分)11.计算:______,方程的解为______.【答案】(1).2(2).;【解析】【分析】根据对数运算法则进行运算即可.【详解】根据对数的运算得到;方程,即.故答案为:(1).2;(2).【点睛】本题考查了对数的运算公式以及指对互化的应用,较为简单.12.已知函数的最小正周期是,则______,若,则______.【答案】(1).(2).;【解析】【分析】根据正弦函数的性质得到周期公式,进而求得参数值;由诱导公式得到再由二倍角公式得到结果.【详解】函数的最小正周期是若,即化简得到根据二倍角公式得到故答案为:(1);(2).【点睛】这个题目考查了正弦函数的性质以及诱导公式和二倍角公式的应用,题型简单.13.已知的展开式的所有项系数之和为27,则实数______,展开式中含的项的系数是______.【答案】(1).2(2).23;【解析】【分析】将x=1代入表达式可得到各项系数之和,按照展开式的系数的公式得到的系数之和.【详解】已知的展开式的所有项系数之和为27,将x=1代入表达式得到展开式中含的项的系数是故答案为:(1).2;(2).23.【点睛】求二项展开式有关问题的常见类型及解题策略:(1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可;(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第项,由特定项得出值,最后求出其参数.14.在平面直角坐标系中,不等式组所表示的平面区域的面积等于______,的取值范围是______.【答案】(1).2(2).;【解析】【分析】先根据约束条件画出可行域,再利用几何意义求面积,只需求出区域图形的面积即可;将目标函数化为斜截式,根据图像分析得到最值.【详解】不等式组表示的可行域如图,三条直线围成的三角形,可得C(1,0),可得B(1,4),解得A(0,1)区域面积为:×4×1=2.目标函数,根据图像得到过点B时取得最小值1,过点C时取得最大值6.故答案为:(1)2;(2).【点睛】利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域;(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(型)、斜率型(型)和距离型(型);(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解;(4)求最值:将最优解代入目标函数即可求出最大值或最小值.15.已知正实数,满足,则的最大值为______.【答案】3;【解析】【分析】将原式子变形得到再由均值不等式可得到最值.【详解】已知正实数,满足,根据均值不等式得到等号成立的条件为:x=2y+2.故答案为:3.【点睛】这个题目考查了均值不等式的应用,在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.16.浙江省现行的高考招生制度规定除语、数、英之外,考生须从政治、历史、地理、物理、化学、生物、技术这7门高中学考科目中选择3门作为高考选考科目,成绩计入高考总分.已知报考某高校、两个专业各需要一门科目满足要求即可,专业:物理、化学、技术;专业:历史、地理、技术.考生小李今年打算报考该高校这两个专业的选考方式有______种.(用数字作答)【答案】27;【解析】【分析】根据题意,分四种情况讨论即可,最终将每种情况的个数加到一起.【详解】根据题意得到分情况:当考生选择技术时,两个专业均可报考,再从剩下的6门课中选择两科即可,方法有种;当学生不选技术时,可以从物理化学中选择一科,再从历史,地理选一科,最后从政治生物中选择一科,有种方法;当学生同时选物理化学时,还需要选择历史,地理中的一科,有2中选择,当学生同时选择历史,地理时,需要从物理化学中再选择一科,也有2种方法,共有4种;最终加到一起共有:15+8+4=27种.故答案为:27.【点睛】(1)解排列组合问题要遵循两个原则:①按元素(或位置)的性质进行分类;②按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).(2)不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组.注意各种分组类型中,不同分组方法的求解.17.已知点是抛物线上的一点,过作直线的垂线,垂足为,直线经过原点,由上的一点向圆引两条切线,分别切圆于,两点,且为直角三角形,则的最小值是______.【答案】.【解析】【分析】根据抛物线的定义得到,点在以为圆心,为半径的圆上,故,代入可得到结果.【详解】抛物线的焦点是,准线是,故由抛物线的定义可知,故,易知四边形为正方形,故,因此点在以为圆心,为半径的圆上,故,所以,即.故答案为:.【点睛】这个题目考查了抛物线的定义的应用,以及圆的定义的应用,题型综合性较强,属于中档题.三、解答题(本大题共5小题,共74分,解答应写出文字说明、证明过程或演算步骤)18.在中,角,,所对的边分别是,,,已知.(Ⅰ)求角的大小;(Ⅱ)若,,求的面积.【答案】(1)(2)【解析】【分析】(Ⅰ)由正弦定理得到,再由三角形的内角间的关系得到,解得,进而得到结果;(Ⅱ)结合余弦定理得到,代入参数值得到,根据三角形面积公式得到结果即可.【详解】(Ⅰ)根据正弦定理,,整理得,即,而,所以,解得,又,故;(Ⅱ)根据余弦定理,,又,,,故,解得,所以.【点睛】本题主要考查正弦定理边角互化及余弦定理的应用与特殊角的三角函数,属于简单题.对余弦定理一定要熟记两种形式:(1);(2),同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住等特殊角的三角函数值,以便在解题中直接应用.19.在数列、中,设是数列的前项和,已知,,,.(Ⅰ)求和;(Ⅱ)若时,恒成立,求整数的最小值.【答案】(1),(2)整数的最小值是11.【解析】【分析】(Ⅰ)根据题干条件得到是等差数列,可得到前n项和公式以及通项;(Ⅱ)当时,①②两式做差可得到,代入不等式得到.【详解】(Ⅰ)因为,即,所以是等差数列,又,所以,从而.(Ⅱ)因为,所以,当时,①②①-②可得,,即,而也满足,故.令,则,即,因为,,依据指数增长性质,整数的最小值是11.【点睛】这个题目考查了等差数列的通项的计算,以及前n项和的计算公式,应用到了通项和前n项和的关系,题型较为基础.20.如图,多面体由正方体和四棱锥组成.正方体棱长为2,四棱锥侧棱长都相等,高为1.(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值.【答案】(1)见解析(2)【解析】【分析】(Ⅰ)建立空间坐标系得到向量,面PCD的法向量,由向量点积的坐标运算得到结果;(Ⅱ)分别求得两个面的法向量,求出两个法向量的夹角,即可得到二面角的大小.【详解】(Ⅰ)因为,,,所以,,即,.故,平面.(Ⅱ)平面的一个法向量是.设是平面的法向量,则,取.故,二面角的余弦值是.【点睛】这个题目考查了空间中的直线和平面的位置关系,平面和平面的夹角。求线面角,一是可以利用等体积计算出直线的端点到面的距离,除以线段长度就是线面角的正弦值;还可以建系,用空间向量的方法求直线的方向向量和面的法向量,再求线面角即可。面面角一般是定义法,做出二面角,或者三垂线法做出二面角,利用几何关系求出二面角,也可以建系来做。21.已知椭圆的中心在坐标原点,其右焦点为,以坐标原点为圆心,椭圆短半轴长为半径的圆与直线相切.(Ⅰ)求椭圆的方程;(Ⅱ)经过点的直线,分别交椭圆于,及,四点,且,探究:是否存在常数,使得.【答案】(1)(2),使得恒成立.【解析】【分析】(Ⅰ)根据点到直线的距离公式得到,再由a,b,c的关系可得到每一个参数值;(Ⅱ)(ⅰ)当与其中一条直线的斜率不存在时,易知,其中一个为长轴,另一个为通径,可代入验证,求得参数值;(ⅱ)当与斜率存在且不为零时,设的方程为,则的方程,分别联立两直线和椭圆方程,结合弦长公式和韦达定理得到参数值.【详解】(Ⅰ)设所求椭圆的方程为,由点到直线的距离为,故,又,所以,故所求椭圆的方程为;(Ⅱ)假设存在常数,使得恒成立,则,(ⅰ)当与其中一条直线的斜率不存在时,易知,其中一个为长轴,另一个为通径,长轴长为,通径为,此时,(ⅱ)当与斜率存在且不为零时,不妨设的方程为,则的方程,联立方程,消去可得,设,,则,所以,将代入,化

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论