《第3章勾股定理》期末复习自主提升训练 七年级数学上册_第1页
《第3章勾股定理》期末复习自主提升训练 七年级数学上册_第2页
《第3章勾股定理》期末复习自主提升训练 七年级数学上册_第3页
《第3章勾股定理》期末复习自主提升训练 七年级数学上册_第4页
《第3章勾股定理》期末复习自主提升训练 七年级数学上册_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

七年级数学上册《第3章勾股定理》期末复习自主提升训练(附答案)1.在勾股定理的学习过程中,我们已经学会了运用如图图形,验证著名的勾股定理,这种根据图形直观推论或验证数学规律和公式的方法,简称为“无字证明”.实际上它也可用于验证数与代数,图形与几何等领域中的许多数学公式和规律,它体现的数学思想是()A.统计思想 B.分类思想 C.数形结合思想 D.函数思想2.已知a、b、c为△ABC的三边,且满足(a﹣b)(a2+b2﹣c2)=0,则△ABC是()A.等边三角形 B.直角三角形 C.等腰直角三角形 D.等腰三角形或直角三角形3.一个圆桶底面直径为7cm,高24cm,则桶内所能容下的最长木棒为()A.20cm B.25cm C.26cm D.30cm4.勾股定理是人类早期发现并证明的重要数学定理之一,这是历史上第一个把数与形联系起来的定理,其证明是论证几何的发端.下面四幅图中,不能证明勾股定理的是()A. B. C. D.5.在下列四组数中,不是勾股数的一组数是()A.a=15,b=8,c=17 B.a=9,b=12,c=15 C.a=7,b=24,c=25 D.a=3,b=4,c=76.如图,由两个直角三角形和三个大正方形组成的图形,其中阴影部分面积是()A.16 B.25 C.144 D.1697.如图,一根长25m的梯子,斜靠在一竖直的墙上,这时梯子的底端距墙底端7m.如果梯子的顶端下滑4m,那么梯子的底端将向右滑动()A.15m B.9m C.7m D.8m8.阅读理解:如果一个正整数m能表示为两个正整数a,b的平方和,即m=a2+b2,那么称m为广义勾股数,则下面的四个结论:①7不是广义勾股数;②13是广义勾股数;③两个广义勾股数的和是广义勾股数;④两个广义勾股数的积是广义勾股数.依次正确的是()A.②④ B.①②④ C.①② D.①④9.如图,分别以直角△ABC三边为边向外作三个正方形,其面积分别用S1、S2、S3表示,若S2=7,S3=2,那么S1=()A.9 B.5 C.53 D.4510.如图Rt△ABC,∠C=90°,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”;当AC=3,BC=4时,计算阴影部分的面积为()A.6 B.6π C.10π D.1211.已知等腰三角形的一条腰长是15,底边长是18,则它底边上的高为()A.9 B.12 C.15 D.1812.一根旗杆在离地面3米处断裂,旗杆顶部落在离旗杆底部4米处,旗杆折断之前的高度是()A.5米 B.7米 C.8米 D.9米13.小明想知道学校旗杆的高度,她发现旗杆上的绳子刚好垂到地面,当她把绳子的下端拉开5米后,发现绳子下端距离地面1米,则旗杆的高是()A.8米 B.10米 C.12米 D.13米14.三角形的三边分别为a、b、c,由下列条件不能判断它是直角三角形的是()A. B.a2﹣b2=c2 C.a2=(b+c)(b﹣c) D.a:b:c=13:5:1215.如图,在高为3米,斜坡长为5米的楼梯台阶上铺地毯,则地毯的长度至少要()A.4米 B.5米 C.6米 D.7米16.若直角三角形两边分别是3和4,则第三边是.17.在△ABC中,AB=15,AC=20,D是BC边所在直线上的点,AD=12,BD=9,则BC=.18.如图,一个池塘,其底面是边长为10尺的正方形,一棵芦苇AB生长在它的中央,高出水面的部分BC为1尺.如果把这根芦苇沿与水池边垂直的方向拉向岸边,芦苇的顶部B恰好碰到岸边的B',则这根芦苇的长度是尺.19.如图,已知正方形ABCD的面积为4,正方形FHIJ的面积为3,点D、C、G、J、I在同一水平面上,则正方形BEFG的面积为.20.如图,已知∠B=∠C=∠D=∠E=90°,且AB=CD=3,BC=4,DE=EF=2,则AF的长是.21.如图,一只蚂蚁从长为7cm、宽为5cm,高是9cm的长方体纸箱的A点沿纸箱爬到B点,那么它所走的最短路线的长是cm.22.如图,一圆柱体的底面周长为24cm,高AB为9cm,BC是上底面的直径.一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,则蚂蚁爬行的最短路程是cm.23.若△ABC为直角三角形,AC=BC=4,以BC为直径画半圆如图所示,则阴影部分的面积为.24.如图,数字代表所在正方形的面积,则A所代表的正方形的面积为.25.如图,把一块直角三角形(△ABC,∠ACB=90°)土地划出一个三角形(△ADC)后,测得CD=3米,AD=4米,BC=12米,AB=13米.(1)求证:∠ADC=90°;(2)求图中阴影部分土地的面积.26.拖拉机行驶过程中会对周围产生较大的噪声影响.如图,有一台拖拉机沿公路AB由点A向点B行驶,已知点C为一所学校,且点C与直线AB上两点A,B的距离分别为150m和200m,又AB=250m,拖拉机周围130m以内为受噪声影响区域.(1)学校C会受噪声影响吗?为什么?(2)若拖拉机的行驶速度为每分钟50米,拖拉机噪声影响该学校持续的时间有多少分钟?27.如图所示,一架梯子AB斜靠在墙面上,且AB的长为2.5米.(1)若梯子底端离墙角的距离OB为1.5米,求这个梯子的顶端A距地面有多高?(2)在(1)的条件下,如果梯子的顶端A下滑0.5米到点A',那么梯子的底端B在水平方向滑动的距离BB'为多少米?28.甲、乙两船同时从港口A出发,甲船以30海里/时的速度沿北偏东35°方向航行,乙船沿南偏东55°向航行,2小时后,甲船到达C岛,乙船到达B岛,若C,B两岛相距100海里,问乙船的速度是每小时多少海里?29.如图,在等边△ABC中,AB=AC=BC=6cm,现有两点M、N分别从点A、B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次回到点B时,点M、N同时停止运动,设运动时间为ts.(1)当t为何值时,M、N两点重合;(2)当点M、N分别在AC、BA边上运动,△AMN的形状会不断发生变化.①当t为何值时,△AMN是等边三角形;②当t为何值时,△AMN是直角三角形;(3)若点M、N都在BC边上运动,当存在以MN为底边的等腰△AMN时,求t的值.30.如图,已知等腰△ABC的底边BC=13cm,D是腰AB上一点,且CD=12cm,BD=5cm.(1)求证:△BDC是直角三角形;(2)求△ABC的周长.

参考答案1.解:这种根据图形直观推论或验证数学规律和公式的方法,简称为“无字证明”,它体现的数学思想是数形结合思想,故选:C.2.解:∵(a﹣b)(a2+b2﹣c2)=0,∴a﹣b=0,或a2+b2﹣c2=0,即a=b或a2+b2=c2,∴△ABC的形状为等腰三角形或直角三角形.故选:D.3.解:如图,AC为圆桶底面直径,CB是桶高,∴AC=7cm,CB=24cm,∴线段AB的长度就是桶内所能容下的最长木棒的长度,∴AB===25(cm).故桶内所能容下的最长木棒的长度为25cm.故选:B.4.解:A、∵ab+c2+ab=(a+b)(a+b),∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;B、∵4×ab+c2=(a+b)2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;C、∵4×ab+(b﹣a)2=c2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;D、根据图形不能证明勾股定理,故本选项符合题意;故选:D.5.解:A、82+152=172,是勾股数,不符合题意;B、92+122=152,是勾股数,不符合题意;C、72+242=252,是勾股数,不符合题意;D、32+42≠72,不是勾股数,符合题意.故选:D.6.解:根据勾股定理得出:AB=,∴EF=AB=5,∴阴影部分面积是25,故选:B.7.解;梯子顶端距离墙角地距离为=24(m),顶端下滑后梯子底端距离墙角的距离为=15(m),15﹣7=8(m).故选:D.8.解:①∵7不能表示为两个正整数的平方和,∴7不是广义勾股数,故①结论正确;②∵13=22+32,∴13是广义勾股数,故②结论正确;③两个广义勾股数的和不一定是广义勾股数,如5和10是广义勾股数,但是它们的和不是广义勾股数,故③结论错误;④设,,则=a2c2+a2d2+b2c2+b2d2=(a2c2+b2d2+2abcd)+(a2d2+b2c2﹣2abcd)=(ac+bd)2+(ad﹣bc)2,当a=c,b=d时,ad﹣bc=0,∴两个广义勾股数的积不一定是广义勾股数,如2和2都是广义勾股数,但2×2=4,4不是广义勾股数,故④结论错误,∴依次正确的是①②.故选:C.9.解:在Rt△ABC中,AB2=BC2+AC2,∵S1=AB2,S2=BC2,S3=AC2,∴S1=S2+S3.∵S2=7,S3=2,∴S1=7+2=9.故选:A.10.解:在Rt△ACB中,∠ACB=90°,AC=3,BC=4,由勾股定理得:AB===5,所以阴影部分的面积S=×π×()2+×()2+﹣×π×()2=6,故选:A.11.解:过点A作AD⊥BC,∵AB=AC,∴BD=CD=BC=18=9,∴AD==12(cm),∴它底边上的高为12cm;故选:B.12.解:如图,由题意,AC⊥BC,AC=3米,BC=4米,旗杆折断之前的高度高度就是AC+AB.在Rt△ACB中,∠C=90°,AC=3米,BC=4米,∴AB=(米),∴旗杆折断之前的高度高度=AC+AB=3+5=8(米),故选:C.13.解:如图,已知AB=AC,CD⊥BD,CH⊥AB,CD=1米,CH=5米,设AB=AC=x米.在Rt△ACH中,∵AC2=AH2+CH2,∴x2=52+(x﹣1)2,∴x=13,∴AB=13(米),故选:D.14.解:A、∵,b=,c=,∴b2+c2≠a2,即此三角形不是直角三角形,故本选项符合题意;B、∵a2﹣b2=c2,∴b2+c2=a2,即此三角形是直角三角形,故本选项不符合题意;C、∵a2=(b+c)(b﹣c)=b2﹣c2,∴a2+c2=b2,即此三角形是直角三角形,故本选项不符合题意;D、∵a:b:c=13:5:12,∴b2+c2=a2,即此三角形是直角三角形,故本选项不符合题意;故选:A.15.解:在Rt△ABC中,AC==4米,故可得地毯长度=AC+BC=7米,故选:D.16.解:设第三边为x,(1)若4是直角边,则第三边x是斜边,由勾股定理得:32+42=x2,∴x=5;(2)若4是斜边,则第三边x为直角边,由勾股定理得:32+x2=42,∴x=;∴第三边的长为5或.故答案为:5或.17.解:如图1所示,当点D在线段BC上时,∵AD=12,BD=9,AB=15,∴AD2+BD2=AB2,∴△ABD是直角三角形,且∠ADB=90°,∴∠ADC=90°,∴DC===16,∴BC=BD+CD=9+16=25;如图2所示,当点D在CB的延长线上时,同理可得,DC=16,∴BC=CD﹣BD=16﹣9=7;由于AC>AB,所以点D不在BC的延长线上.综上所述,BC的长度为25或7.故答案为:25或7.18.解:设芦苇长AB=AB′=x尺,则水深AC=(x﹣1)尺,因为边长为10尺的正方形,所以B'C=5尺在Rt△AB'C中,52+(x﹣1)2=x2,解之得x=13,即芦苇长13尺.故答案是:13.19.解:∵四边形ABCD、四边形FHIJ和四边形BEFG都是正方形,∴∠BCG=∠BGF=∠GJF=90°,BG=GF,∴∠CBG+∠BGC=90°,∠JGF+∠BGC=90°,∴∠CBG=∠JGF,在△BCG和△GJF中,,∴△BCG≌△GJF(AAS),∴BC=GJ,∵正方形ABCD的面积为4,正方形FHIJ的面积为3,∴BC2=4,FJ2=3,∴GJ2=4,在Rt△GJF中,由勾股定理得:FG2=GJ2+FJ2=4+3=7,∴正方形BEFG的面积为7.故答案为:7.20.解:过F作FM⊥AB交AB的延长线于点M,则AM=AB+DC+EF=8,FM=BC+DE=6,在Rt△AMF中,∵AF2=AM2+FM2,∴AF=10.故答案为:10.21.解:由题意可得,当展开前面和右面时,最短路线长是:==15(cm);当展开前面和上面时,最短路线长是:==7(cm);当展开左面和上面时,最短路线长是:=(cm);∵15<7<,∴一只蚂蚁从长为7cm、宽为5cm,高是9cm的长方体纸箱的A点沿纸箱爬到B点,那么它所走的最短路线的长是15cm,故答案为:15.22.解:如图所示:由于圆柱体的底面周长为24cm,则AD=24×=12cm.又因为CD=AB=9cm,所以AC==15cm.故蚂蚁从点A出发沿着圆柱体的表面爬行到点C的最短路程是15cm.故答案为:15.23.解:设AB交半圆于点D,连接CD.∵BC是直径,∴∠BDC=90°,即CD⊥AB;又∵△ABC为等腰直角三角形,∴CD垂直平分斜边AB,∴CD=BD=AD,∴=,∴S弓形BD=S弓形CD,∴S阴影=SRt△ABC﹣SRt△BCD;∵△ABC为等腰直角三角形,CD是斜边AB的垂直平分线,∴SRt△ABC=2SRt△BCD;又SRt△ABC=×4×4=8,∴S阴影=4;故答案为:4.24.解:由题意可知,直角三角形中,一条直角边的平方=36,一直角边的平方=64,则斜边的平方=36+64=100.故答案为100.25.(1)证明:∵∠ACB=90°,BC=12米,AB=13米,∴AC===5(米),∵CD=3米,AD=4米,∴AD2+CD2=AC2=25,∴∠ADC=90°;(2)解:图中阴影部分土地的面积=A×BC﹣AD×CD=×5×12﹣×4×3=24(平方米).26.解:(1)学校C会受噪声影响.理由:如图,过点C作CD⊥AB于D,∵AC=150m,BC=200m,AB=250m,∴AC2+BC2=AB2.∴△ABC是直角三角形.∴AC×BC=CD×AB,∴150×200=250×CD,∴CD==120(m),∵拖拉机周围130m以内为受噪声影响区域,∴学校C会受噪声影响.(2)当EC=130m,FC=130m时,正好影响C学校,∵ED=(m),∴EF=100(m),∵拖拉机的行驶速度为每分钟50米,∴100÷50=2(分钟),即拖拉机噪声影响该学校持续的时间有2分钟.27.解:(1)根据勾股定理:所以梯子距离地面的高度为:AO=(米);(2)梯子下滑了0.5米即梯子距离地面的高度为OA′=(2﹣0.5)=1.5(米),根据勾股定理:OB′==2(米),所以当梯子的顶端下滑0.5米时,梯子的底端水平后移了2﹣1.5=0.5(米),答:当梯子的顶端下滑0.5米时,梯子的底端水平后移了0.5米.28.解:∵甲的速度是30海里/时,时间是2小时,∴AC=60海里.∵∠EAC=35°,∠FAB=55°,∴∠CAB=90°.∵BC=100海里,∴AB=海里.∵乙船也用2小时,∴乙船的速度是4

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论