




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第6章平行四边形一、复习目标1.能够熟练掌握平行四边形的判定和性质定理,并能够应用数学符号语言表述证明过程。2.掌握三角形中位线的定义和性质,明确三角形中位线与中线的不同并能运用它进行有关的论证和计算。3.掌握多边形内角和、外角和定理,进一步了解转化的数学思想。4.会熟练应用所学定理进行证明。体会证明中所运用的归类、类比、转化等数学思想,通过复习课对证明的必要性有进一步的认识。二、课时安排1课时三、复习重难点(1)平行四边形的性质和判定(2)多边形内角和外角和(3)三角形的中位线四、教学过程(一)知识梳理1.平行四边形的定义:两组对边分别平行的四边形。平行四边形不相邻的两个顶点连成的线段叫做平行四边形的对角线。四边形ABCD是平行四边形可记作ABCD。2.平行四边形的性质:平行四边形的对边相等,平行四边形的对角相等;平行四边形的对角线互相平分。3.平行四边形的判定:对角线互相平分的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形。4.若两条直线平行,则其中一条直线上任意两点到另一条直线的距离相等,这个距离称为平行线间的距离。即平行线间的距离相等。5.三角形中位线:连接三角形两边中点的线段。性质:三角形的中位线平行于第三边,并且等于它的一半。6.多边形内角和公式:n边形的内角和是(n-2)180°。7.多边形内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角;在每个顶点处取这个多边形的一个外角,它们的和叫做这个多边形的外角和。多边形的外角和等于360°。(二)题型、方法归纳考点一:平行四边形的性质例1已知ABCD的周长为32,AB=4,则BC=()A.4 B.12 C.24 D.28分析:根据平行四边形的性质得到AB=CD,AD=BC,根据2(AB+BC)=32,即可求出答案.解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∵平行四边形ABCD的周长是32,∴2(AB+BC)=32,∴BC=12.故选B.例2如图,▱ABCD与▱DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为.分析:由▱ABCD与▱DCFE的周长相等,可得到AD=DE即△ADE是等腰三角形,再由且∠BAD=60°,∠F=110°,即可求出∠DAE的度数.解:∵□ABCD与□DCFE的周长相等,且CD=CD,∴AD=DE,∵∠DAE=∠DEA,∵∠BAD=60°,∠F=110°,∴∠ADC=120°,∠CDE═∠F=110°,∴∠ADE=360°﹣120°﹣110°=130°,∴∠DAE==25°,答案:25°.考点二:平行四边形的判定例3四边形ABCD中,对角线AC与BD交于点O,下列条件不能判定这个四边形是平行四边形的是()A.OA=OC,OB=ODB.AD∥BC,AB∥DCC.AB=DC,AD=BCD.AB∥DC,AD=BC分析:A、∵OA=OC,OB=OD,∴四边形ABCD是平行四边形.故能能判定这个四边形是平行四边形;B、∵AD∥BC,AB∥DC,∴四边形ABCD是平行四边形.故能能判定这个四边形是平行四边形;C、AB=DC,AD=BC,∴四边形ABCD是平行四边形.故能能判定这个四边形是平行四边形;D、AB∥DC,AD=BC,∴四边形ABCD是平行四边形或等腰梯形.故不能能判定这个四边形是平行四边形.答案:D.例4如图,在四边形ABCD中,AD∥BC,AD=5cm,BC=9cm.M是CD的中点,P是BC边上的一动点(P与B,C不重合),连接PM并延长交AD的延长线于Q.(1)试说明△PCM≌△QDM.(2)当点P在点B、C之间运动到什么位置时,四边形ABPQ是平行四边形?并说明理由.分析:(1)要证明△PCM≌△QDM,可以根据两个三角形全等四个定理,即AAS、ASA、SAS、SSS中的ASA.利用∠QDM=∠PCM,DM=CM,∠DMQ=∠CMP即可得出;(2)得出P在B、C之间运动的位置,根据一组对边平行且相等的四边形是平行四边形得出.(1)证明:∵AD∥BC∴∠QDM=∠PCM∵M是CD的中点,∴DM=CM,∵∠DMQ=∠CMP,在△PCM和△QDM中∵,∴△PCM≌△QDM(ASA).(2)解:当四边形ABPQ是平行四边形时,PB=AQ,∵BC﹣CP=AD+QD,∴9﹣CP=5+CP,∴CP=(9﹣5)÷2=2.∴当PC=2时,四边形ABPQ是平行四边形.考点三:三角形的中位线例5如图,在△ABC中,D,E分别是边AB,AC的中点,若BC=6,则DE=.分析:由D、E分别是AB、AC的中点可知,DE是△ABC的中位线,利用三角形中位线定理可求出DE.解:∵D、E是AB、AC中点,∴DE为△ABC的中位线,∴ED=BC=3.答案:3.考点四:多边形内角和与外角和例6若一个多边形内角和为1800°,求该多边形的边数。解:设这个多边形的边数为n,则:即该多边形为十二边形。例7多边形的内角和与某一个外角的度数总和为1350°,求该多边形的边数。分析:该外角的大小范围应该是由此可得到该多边形内角和范围应该是,而解:设该多边形边数为n,这个外角为x°则因为n为整数,所以必为整数。即:必为180°的倍数。又因为,所以(三)典例精讲1.如图,▱ABCD中,下列说法一定正确的是()A.AC=BDB.AC⊥BDC.AB=CDD.AB=BC2.如图,在四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定四边形ABCD为平行四边形的是()A.AB∥CD,AD∥BCB.OA=OC,OB=ODC.AD=BC,AB∥CDD.AB=CD,AD=BC3.如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为()A.13B.14C.15D.164.如图,等边△ABC中,点D、E分别为边AB、AC的中点,则∠DEC的度数为()A.30°B.60°C.120°D.150°5.以三角形的三个顶点及三边中点为顶点的平行四边形共有()A.1个B.2个C.3个D.4个6.如图,在梯形ABCD中,AD∥BC,AB=DC=AD,∠C=60°,AE⊥BD于点E,F是CD的中点,DG是梯形ABCD的高.求证:四边形AEFD是平行四边形;(四)归纳小结(五)随堂检测1.如图,在▱ABCD中,E是AD边上的中点,连接BE,并延长BE交CD延长线于点F,则△EDF与△BCF的周长之比是()A.1:2B.1:3C.1:4D.1:52.四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD从中任选两个条件,能使四边形ABCD为平行四边形的选法有()A.3种B.4种C.5种D.6种3.如图,在梯形ABCD中,AD∥BC,点E、F分别是AB、CD的中点且EF=6,则AD+BC的值是()A.9B.10.5C.12D.154.已知一个多边形的内角和是1080°,这个多边形的边数是8.5.如图,已知BE∥DF,∠ADF=∠CBE,AF=CE,求证:四边形DEBF是平行四边形.五、板书设计第四章平行四边形1.平行四边形的概念2.平行四边形的性质3.平形四边形的判定4.三角形中位线5.多
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 收纳师考试频出试题及答案详解
- 2024年统计师考试新变化试题及答案
- 档案用户行为研究及管理对策试题及答案
- 关注时效性的食品安全员考试试题与答案
- 二级建造师考试经典例题解析试题及答案
- 未来的 收纳师 试题及答案分析
- 2024年统计师考试评估项目及试题及答案
- 档案管理与现代社会发展的关系试题及答案
- 2024年咖啡师考试Print PDF及试题及答案
- 二级建造师多选题解析及试题及答案
- 110kV变电站短路电流计算书
- 船舶带缆知识学习
- 后腹腔镜下输尿管切开取石术课件
- 与装修人员签安全协议书
- 2023年湖北省武汉市中考英语真题(含答案)
- 全面地476种食物升糖指数一览表
- 自然交易理论基础与进阶(自然交易理论丛书)
- (完整版)一年级100以内两位数加一位数的进位加法练习题
- 天冬中药材种植可行性研究报告
- 肝肾综合征演示文稿
- 国际关系理论智慧树知到答案章节测试2023年外交学院
评论
0/150
提交评论