




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
《分类加法计数原理与分步乘法计数原理》素材(2)考情分析两个原理是解决排列、组合和概率的基础,贯穿始终,在高考中一般不单独考察,而是作为一种思想方法用在排列组合问题中。在本部分要注意分类讨论思想和补集思想。基础知识1.分类计数原理完成一件事,有n类方式,在第一类方式,中有种不同的方法,在第二类方式,中有种不同的方法,……,在第n类方式,中有种不同的方法.那么完成这件事共有2.分步计数原理完成一件事,需要分成n个步骤,做第1步有种不同的方法,做第2步有种不同的方法,……,做第n步有种不同的方法,那么完成这件事共有种方法。3.(1)分类计数与分步计数原理是两个最基本,也是最重要的原理,是解答排列、组合问题,尤其是较复杂的排列、组合问题的基础.(2)辨别运用分类计数原理还是分步计数原理的关键是“分类”还是“分步”,也就是说“分类”时,各类办法中的每一种方法都是独立的,都能直接完成这件事,而“分步”时,各步中的方法是相关的,缺一不可,当且仅当做完个步骤时,才能完成这件事.注意事项分类加法计数原理与分步乘法计数原理是解决排列组合问题的基础并贯穿始终.分类加法计数原理中,完成一件事的方法属于其中一类并且只属于其中一类,简单的说分类的标准是“不重不漏,一步完成”.而分步乘法计数原理中,各个步骤相互依存,在各个步骤中任取一种方法,即是完成这件事的一种方法,简单的说步与步之间的方法“相互独立,多步完成”.类比加法与乘法的关系,在特定的情况下分步乘法计数原理可简化运用分类加法计数原理的过程.题型一分类加法计数原理【例1】某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友一本,则不同的赠送方法共有().A.4种B.10种C.18种D.20种解析赠送一本画册,3本集邮册,共4种方法;赠送2本画册,2本集邮册共Ceq\o\al(2,4)种方法,由分类计数原理知不同的赠送方法共4+Ceq\o\al(2,4)=10(种).答案B【变式1】如图所示,在连接正八边形的三个顶点而成的三角形中,与正八边形有公共边的三角形有________个.解析把与正八边形有公共边的三角形分为两类:第一类,有一条公共边的三角形共有8×4=32(个);第二类,有两条公共边的三角形共有8(个).由分类加法计数原理知,共有32+8=40(个).答案40题型二分步乘法计数原理【例2】如图所示2×2方格,在每一个方格中填入一个数字,数字可以是1、2、3、4中的任何一个,允许重复.若填入A方格的数字大于B方格的数字,则不同的填法共有()ABCDA.192种 B.128种C.96种 D.12种答案:C解析:可分三步:第一步,填A、B方格的数字,填入A方格的数字大于B方格中的数字有6种方式(若方格A填入2,则方格B只能填入1;若方格A填入3,则方格B只能填入1或2;若方格A填入4,则方格B只能填入1或2或3);第二步,填方格C的数字,有4种不同的填法;第三步,填方格D的数字,有4种不同的填法.由分步计数原理得,不同的填法总数为6×4×4=96.【变式2】](1)4名同学选报跑步、跳高、跳远三个项目,每人报一项,共有多少种报名方法?(2)4名同学争夺跑步、跳高、跳远三项冠军,共有多少种可能的结果?解:(1)该问题中要完成的事是4名同学报名,因而可按学生分步完成,每一名同学有3种选择方法,故共有34=81(种)报名方法.(2)该问题中,要完成的事是三项冠军花落谁家,故可按冠军分步完成,每一项冠军都有4种可能,故可能的结果有43=64(种).题型三涂色问题【例3】]如图,用6种不同的颜色把图中A、B、C、D四块区域分开,若相邻区域不能涂同一种颜色,则不同的涂法共有________.答案:480种解析:从A开始,有6种方法,B有5种,C有4种,D、A同色1种,D、A不同色3种,∴不同涂法有6×5×4×(1+3)=480(种).【变式3】如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,求不同的染色方法种数.解法一可分为两大步进行,先将四棱锥一侧面三顶点染色,然后再分类考虑另外两顶点的染色数,用分步乘法原理即可得出结论.由题设,四棱锥SABCD的顶点S、A、B所染的颜色互不相同,它们共有5×4×3=60种染色方法.当S、A、B染好时,不妨设其颜色分别为1、2、3,若C染2,则D可染3或4或5,有3种染法;若C染4,则D可染3或5,有2种染法,若C染5,则D可染3或4,有2种染法.可见,当S、A、B已染好时,C、D还有7种染法,故不同的染色方法有60×7=420(种).法二以S、A、B、C、D顺序分步染色第一步,S点染色,有5种方法;第二步,A点染色,与S在同一条棱上,有4种方法;第三步,B点染色,与S、A分别在同一条棱上,有3种方法;第四步,C点染色,也有3种方法,但考虑到D点与S、A、C相邻,需要针对A与C是否同色进行分类,当A与C同色时,D点有3种染色方法;当A与C不同色时,因为C与S、B也不同色,所以C点有2种染色方法,D点也有2种染色方法.由分步乘法、分类加法计数原理得不同的染色方法共有5×4×3×(1×3+2×2)=420(种).法三按所用颜色种数分类第一类,5种颜色全用,共有Aeq\o\al(5,5)种不同的方法;第二类,只用4种颜色,则必有某两个顶点同色(A与C,或B与D),共有2×Aeq\o\al(4,5)种不同的方法;第三类,只用3种颜色,则A与C、B与D必定同色,共有Aeq\o\al(3,5)种不同的方法.由分类加法计数原理,得不同的染色方法总数为Aeq\o\al(5,5)+2×Aeq\o\al(4,5)+Aeq\o\al(3,5)=420(种).重难点突破【例4】用红、黄、蓝、白、黑五种颜色涂在“田”字形的4个小方格内,每格涂一种颜色,相邻两格涂不同的颜色,如果颜色可以反复使用,共有多少种不同的涂色方法?颜色可以反复使用,即说明在不相邻的小方格内可以使用同一种颜色,首先确定第一个小方格的涂法,再考虑其相邻的两个小方格的涂法.1234[解析]如图所示,将4个小方格依次编号为1,2,3,4,第1个小方格可以从5种颜色中任取一种颜色涂上,有5种不同的涂法.①当第2个、第3个小方格涂不同颜色时,有Aeq\o\al(2,4)=12种不同的涂法,第4个小方格有3种不同的涂法.由分步计数原理可知,有5×12×3=180种不同的涂法;②当第2个、第3个小方格涂相同颜色时,有4种涂法,由于相邻西格不同色,因此,第4个小方格也有4种不同的涂法,由分步计数原理可知.有5×4×4=80种不同的涂法.由分类加法计数原理可得,共有180+80=260种不同的涂法.巩固提高1.某电话局的电话号码为139××××××××,若最后五位数字是由6或8组成的,则这样的电话号码一共有()A.20个 B.25个C.32个 D.60个答案:C解析:采用分步计数的方法,五位数字由6或8组成,可分五步完成,每一步有两种方法,根据分步乘法计数原理有25=32个,故选C.2.现有4名同学去听同时进行的3个课外知识讲座,每名同学可自由选择其中的一个讲座,不同选法的种数是()A.81 B.64C.48 D.24答案:A解析:每个同学都有3种选择,所以不同选法共有34=81(种),故选A.3.只用1、2、3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数共有()A.6个 B.9个C.18个 D.36个答案:C解析:对于1、2、3三个数组成一个四位数,其中必有一个数要重复,从三个中选一个有Ceq\o\al(1,3)种,这样重复的数有2个,利用插空法知共有Aeq\o\al(3,3)种,因此共有3Aeq\o\al(3,3)=18个这样的四位数.4.若从1,2,3,…,9这9个数中同时取4个不同的数,其和为奇数,则不同的取法共有()A.66种 B.63种C.61种 D.60种答案:D解析:从1,2,3,…,9这9个数中同时取4个不同的数,其和为奇数的取法分为两类:第一类取1个奇数,3个偶数,共有Ceq\o\al(1,5)Ceq\o\al(3,4)=20种取法;第二类是取3个奇数,1个偶数,共有Ceq\o\al(3,5)Ceq\o\al(1,4)=40种取法.故不同的取法共有60种,选D.5.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 餐饮连锁店运营及服务标准
- 高一英语语法:时态变化与语态使用
- 化工工艺反应原理与操作知识考点
- 品牌形象宣传材料制作表格
- 各设备连接协议比较表
- 童年的美好回忆:周记形式的记事作文(6篇)
- 远程协作需求收集表
- 健康状况检查证明书(8篇)
- 疫情期间健康情况跟踪表
- 地震面试题库及答案大全
- 清洁评标标书答辩评分表
- 产品创新设计与实践完整版课件全套ppt教学教程电子教案讲义最全(最新)
- 《我们走在大路上》歌词
- NHK-2XP350S产品手册
- 华东师范大版初中数学八年级下册 综合与实践 图形的等分 课件(共20张PPT)
- 试运行方案计划-
- 变配电运行值班员(500kV及以上)技师-机考题库(导出版)
- 法兰规格尺寸表国标,美标
- 河南省学校结核病疫情处置技术方案(试行)
- 植物的逆境生理课件
- 加油站收银员岗位职责
评论
0/150
提交评论