2023届江苏省扬州市大丰区数学九年级第一学期期末质量检测试题含解析_第1页
2023届江苏省扬州市大丰区数学九年级第一学期期末质量检测试题含解析_第2页
2023届江苏省扬州市大丰区数学九年级第一学期期末质量检测试题含解析_第3页
2023届江苏省扬州市大丰区数学九年级第一学期期末质量检测试题含解析_第4页
2023届江苏省扬州市大丰区数学九年级第一学期期末质量检测试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.的相反数是()A. B. C.2019 D.-20192.如图,在⊙O中,是直径,是弦,于,连接,∠,则下列说法正确的个数是()①;②;③;④A.1 B.2 C.3 D.43.下列四个图形中,不是中心对称图形的是()A. B.C. D.4.已知2x=3y(x≠0,y≠0),则下面结论成立的是()A. B. C. D.5.用配方法解方程,变形后的结果正确的是()A. B. C. D.6.如图,在矩形中,在上,,交于,连结,则图中与一定相似的三角形是A. B. C. D.和7.在△ABC中,若|cosA.45° B.60° C.75° D.105°8.学校“校园之声”广播站要选拔一名英语主持人,小莹参加选拔的各项成绩如下:姓名读听写小莹928090若把读、听、写的成绩按5:3:2的比例计入个人的总分,则小莹的个人总分为()A.86 B.87 C.88 D.899.四张分别画有平行四边形、等腰直角三角形、正五边形、圆的卡片,它们的背面都相同,现将它们背面朝上,从中任取一张,卡片上所画图形恰好是中心对称图形的概率是()A. B. C. D.110.正十边形的外角和为()A.180° B.360° C.720° D.1440°二、填空题(每小题3分,共24分)11.已知:,且y≠4,那么=______.12.如图,直线与两坐标轴相交于两点,点为线段上的动点,连结,过点作垂直于直线,垂足为,当点从点运动到点时,则点经过的路径长为__________.13.若关于x的方程x2-x+sinα=0有两个相等的实数根,则锐角α的度数为___.14.如图,平行四边形中,,如果,则___________.15.如图,C、D是AB为直径的半圆O上的点,若∠BAD=50°,则∠BCD=_____.16.“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为_____尺.17.在平面直角坐标系xOy中,过点P(0,2)作直线l:y=x+b(b为常数且b<2)的垂线,垂足为点Q,则tan∠OPQ=_____.18.若,且,则的值是______.三、解答题(共66分)19.(10分)如图,把点以原点为中心,分别逆时针旋转,,,得到点,,.(1)画出旋转后的图形,写出点,,的坐标,并顺次连接、,,各点;(2)求出四边形的面积;(3)结合(1),若把点绕原点逆时针旋转到点,则点的坐标是什么?20.(6分)某超市为庆祝开业举办大酬宾抽奖活动,凡在开业当天进店购物的顾客,都能获得一次抽奖的机会,抽奖规则如下:在一个不透明的盒子里装有分别标有数字1、2、3、4的4个小球,它们的形状、大小、质地完全相同,顾客先从盒子里随机取出一个小球,记下小球上标有的数字,然后把小球放回盒子并搅拌均匀,再从盒子中随机取出一个小球,记下小球上标有的数字,并计算两次记下的数字之和,若两次所得的数字之和为8,则可获得50元代金券一张;若所得的数字之和为6,则可获得30元代金券一张;若所得的数字之和为5,则可获得15元代金券一张;其他情况都不中奖.(1)请用列表或树状图(树状图也称树形图)的方法(选其中一种即可),把抽奖一次可能出现的结果表示出来;(2)假如你参加了该超市开业当天的一次抽奖活动,求能中奖的概率P.21.(6分)在平面直角坐标系中,已知抛物线.(1)求抛物线的对称轴;(2)当时,设抛物线与轴交于两点(点在点左侧),顶点为,若为等边三角形,求的值;(3)过(其中)且垂直轴的直线与抛物线交于两点.若对于满足条件的任意值,线段的长都不小于1,结合函数图象,直接写出的取值范围.22.(8分)有一水果店,从批发市场按4元/千克的价格购进10吨苹果,为了保鲜放在冷藏室里,但每天仍有一些苹果变质,平均每天有50千克变质丢弃,且每存放一天需要各种费用300元,据预测,每天每千克价格上涨0.1元.(1)设x天后每千克苹果的价格为p元,写出p与x的函数关系式;(2)若存放x天后将苹果一次性售出,设销售总金额为y元,求出y与x的函数关系式;(3)该水果店将这批水果存放多少天后一次性售出,可以获得最大利润,最大利润为多少?23.(8分)如图,一次函数y=x+4的图象与反比例函数y=(k为常数且k≠0)的图象交于A(﹣1,3),B(b,1)两点.(1)求反比例函数的表达式;(2)在x轴上找一点P,使PA+PB的值最小,并求满足条件的点P的坐标;(3)连接OA,OB,求△OAB的面积.24.(8分)如图,BM是以AB为直径的⊙O的切线,B为切点,BC平分∠ABM,弦CD交AB于点E,DE=OE.(1)求证:△ACB是等腰直角三角形;(2)求证:OA2=OE•DC:(3)求tan∠ACD的值.25.(10分)如图,抛物线y=ax2+bx+c经过△ABC的三个顶点,与y轴相交于(0,),点A坐标为(-1,2),点B是点A关于y轴的对称点,点C在x轴的正半轴上.(1)求该抛物线的函数解析式;(2)点F为线段AC上一动点,过点F作FE⊥x轴,FG⊥y轴,垂足分别为点E,G,当四边形OEFG为正方形时,求出点F的坐标;(3)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动,设平移的距离为t,正方形的边EF与AC交于点M,DG所在的直线与AC交于点N,连接DM,是否存在这样的t,使△DMN是等腰三角形?若存在,求t的值;若不存在,请说明理由.26.(10分)如图,在△ABC中,∠C=90°,AC=8cm,BC=6cm.点P从点A出发,沿AB边以2cm/s的速度向点B匀速移动;点Q从点B出发,沿BC边以1cm/s的速度向点C匀速移动,当一个运动点到达终点时,另一个运动点也随之停止运动,设运动的时间为t(s).(1)当PQ∥AC时,求t的值;(2)当t为何值时,△PBQ的面积等于cm2.

参考答案一、选择题(每小题3分,共30分)1、A【解析】直接利用相反数的定义分析得出答案.【详解】解:的相反数是:.故选A.【点睛】此题主要考查了相反数,正确把握相反数的定义是解题关键.2、C【分析】先根据垂径定理得到,CE=DE,再利用圆周角定理得到∠BOC=40°,则根据互余可计算出∠OCE的度数,于是可对各选项进行判断.【详解】∵AB⊥CD,∴,CE=DE,②正确,∴∠BOC=2∠BAD=40°,③正确,∴∠OCE=90°−40°=50°,④正确;又,故①错误;故选:C.【点睛】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理.3、B【分析】根据中心对称图形的概念,即可求解.【详解】A、是中心对称图形,故此选项不合题意;B、不是中心对称图形,故此选项符合题意;C、是中心对称图形,故此选项不合题意;D、是中心对称图形,故此选项不合题意.故选:B.【点睛】本题主要考查中心对称图形的概念掌握它的概念“把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形”,是解题的关键.4、D【分析】根据比例的性质,把等积式写成比例式即可得出结论.【详解】A.由内项之积等于外项之积,得x:3=y:2,即,故该选项不符合题意,B.由内项之积等于外项之积,得x:3=y:2,即,故该选项不符合题意,C.由内项之积等于外项之积,得x:y=3:2,即,故该选项不符合题意,D.由内项之积等于外项之积,得2:y=3:x,即,故D符合题意;故选:D.【点睛】本题考查比例的性质,熟练掌握比例内项之积等于外项之积的性质是解题关键.5、D【分析】先将常数项移到右侧,然后两边同时加上一次项系数一半的平方,配方后进行判断即可.【详解】,,,所以,故选D.【点睛】本题考查了配方法解一元二次方程,熟练掌握配方法的一般步骤以及注意事项是解题的关键.6、B【解析】试题分析:根据矩形的性质可得∠A=∠D=90°,再由根据同角的余角相等可得∠AEB=∠DFE,即可得到结果.∵矩形∴∠A=∠D=90°∴∠DEF+∠DFE=90°∵∴∠AEB+∠DEF=90°∴∠AEB=∠DFE∵∠A=∠D=90°,∠AEB=∠DFE∴∽故选B.考点:矩形的性质,相似三角形的判定点评:相似三角形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中半径常见的知识点,一般难度不大,需熟练掌握.7、C【分析】根据非负数的性质可得出cosA及tanB的值,继而可得出A和B的度数,根据三角形的内角和定理可得出∠C的度数.【详解】由题意,得

cosA=12,tanB=1,

∴∠A=60°,∠B=45°,

∴∠C=180°-∠A-∠B=180°-60°-45°=75°.

故选C8、C【分析】利用加权平均数按照比例进一步计算出个人总分即可.【详解】根据题意得:(分),∴小莹的个人总分为88分;故选:C.【点睛】本题主要考查了加权平均数的求取,熟练掌握相关公式是解题关键.9、B【分析】先找出卡片上所画的图形是中心对称图形的个数,再除以总数即可.【详解】解:∵四张卡片中中心对称图形有平行四边形、圆,共2个,∴卡片上所画的图形恰好是中心对称图形的概率为,故选B.【点睛】此题考查概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,关键是找出卡片上所画的图形是中心对称图形的个数.10、B【分析】根据多边的外角和定理进行选择.【详解】解:因为任意多边形的外角和都等于360°,

所以正十边形的外角和等于360°,.

故选B.【点睛】本题考查了多边形外角和定理,关键是熟记:多边形的外角和等于360度.二、填空题(每小题3分,共24分)11、【分析】由分式的性质和等比性质,即可得到答案.【详解】解:∵,∴,由等比性质,得:;故答案为:.【点睛】本题考查了比例的性质,以及分式的性质,解题的关键是熟练掌握等比性质.12、【分析】根据直线与两坐标轴交点坐标的特点可得A、B两点坐标,由题意可得点M的路径是以AB的中点N为圆心,AB长的一半为半径的,求出的长度即可.【详解】解:∵AM垂直于直线BP,∴∠BMA=90°,∴点M的路径是以AB的中点N为圆心,AB长的一半为半径的,连接ON,∵直线y=-x+4与两坐标轴交A、B两点,∴OA=OB=4,∴ON⊥AB,∴∠ONA=90°,∵在Rt△OAB中,AB=,∴ON=,∴故答案为:.【点睛】本题考查了一次函数的综合题,涉及了两坐标轴交点坐标及点的运动轨迹,难点在于根据∠BMA=90°,判断出点M的运动路径是解题的关键,同学们要注意培养自己解答综合题的能力.13、30°【解析】试题解析:∵关于x的方程有两个相等的实数根,∴解得:∴锐角α的度数为30°;故答案为30°.14、【分析】由平行四边形的性质可知△AEF∽△CDF,再利用条件可求得相似比,利用面积比等于相似比的平方可求得△CDF的面积.【详解】∵四边形ABCD为平行四边形,∴AB∥CD,∴∠EAF=∠DCF,且∠AFE=∠CFD,∴△AEF∽△CDF,∵AE:EB=1:2∴,∴,∵,∴S△CDF=.故答案为:.【点睛】本题主要考查相似三角形的判定和性质,掌握相似三角形的周长比等于相似比、面积比等于相似比的平方是解题的关键.15、130°【分析】根据圆周角定理和圆内接四边形的性质得出∠BAD+∠BCD=180°,代入求出即可.【详解】∵C、D是AB为直径的半圆O上的点,∴∠BAD+∠BCD=180°.∵∠BAD=50°,∴∠BCD=130°.故答案为:130°.【点睛】本题考查了圆周角定理和圆内接四边形的性质,能根据圆内接四边形的性质得出∠BAD+∠BCD=180°是解答本题的关键.16、57.5【分析】根据题意有△ABF∽△ADE,再根据相似三角形的性质可求出AD的长,进而得到答案.【详解】如图,AE与BC交于点F,由BC//ED得△ABF∽△ADE,∴AB:AD=BF:DE,即5:AD=0.4:5,解得:AD=62.5(尺),则BD=AD-AB=62.5-5=57.5(尺)故答案为57.5.【点睛】本题主要考查相似三角形的性质:两个三角形相似对应角相等,对应边的比相等.17、【解析】试题分析:如图,设直线l与坐标轴的交点分别为A、B,∵∠AOB=∠PQB=90°,∠ABO=∠PBQ,∴∠OAB=∠OPQ,由直线的斜率可知:tan∠OAB=,∴tan∠OPQ=;故答案为.考点:1.一次函数图象上点的坐标特征;2.解直角三角形.18、-20;【分析】由比例的性质得到,从而求出a和b+c的值,然后代入计算,即可得到答案.【详解】解:∵,,∴,∴,,∴;故答案为:.【点睛】本题考查了比例的性质,解题的关键是熟练掌握比例的性质,正确得到,.三、解答题(共66分)19、(1)详见解析,,,;(2)50;(3)【分析】(1)根据题意再表格中得出B、C、D,并顺次连接、,,各点即可画出旋转后的图形,写出点,,的坐标即可.(2)可证得四边形ABCD是正方形,根据正方形的面积公式:正方形的面积=对角线×对角线÷2即可得出结果.(3)观察(1)可以得出规律,旋转后的点的坐标和旋转前的点横纵坐标位置相反,且纵坐标变为相反数.【详解】解:(1)如图,,,(2)由旋转性质可得:,∴,∴四边形ABCD为正方形,∴(3)根据题(1)可得出【点睛】本题主要考查的是作图和旋转的性质,根据题目要求准确的作出图形是解题的关键.20、(1)列表见解析;(2).【解析】试题分析:(1)首先根据题意画出表格,然后由表格求得所有等可能的结果;(2、)根据概率公式进行解答即可.试题解析:(1)列表得:

1

2

3

4

1

2

3

4

5

2

3

4

5

6

3

4

5

6

7

4

5

6

7

8

(2)由列表可知,所有可能出现的结果一共有16种,这些结果出现的可能性相同,其中两次所得数字之和为8、6、5的结果有8种,所以抽奖一次中奖的概率为:P==.答:抽奖一次能中奖的概率为.考点:列表法与树状图法21、(1)x=2;(2);(3)或.【解析】(1)利用配方法将二次函数解析式变形为顶点式,由此即可得出抛物线的对称轴;(2)利用二次函数图象上点的坐标特征可得出点A,B的坐标,由(1)可得出顶点C的坐标,再利用等边三角形的性质可得出关于a的一元一次方程,解之即可得出a值;(3)分及两种情况考虑:①当时,利用二次函数图象上点的坐标特征可得出关于a的一元一次不等式,解之即可得出a的取值范围;②当时,利用二次函数图象上点的坐标特征可得出关于a的一元一次不等式,解之即可得出a的取值范围.综上,此题得解.【详解】(1)∵,∴抛物线的对称轴为直线.(2)依照题意,画出图形,如图1所示.当时,,即,解得:,.由(1)可知,顶点的坐标为.∵,∴.∵为等边三角形,∴点的坐标为,∴,∴.(3)分两种情况考虑,如图2所示:①当时,,解得:;②当时,,解得:.【点睛】本题考查了二次函数的三种形式、二次函数图象上点的坐标特征、等边三角形的性质以及解一元一次不等式.22、;(3)该水果店将这批水果存放50天后一次性售出,可以获得最大利润,最大利润为12500元.【分析】(1)根据按每千克元的市场价收购了这种苹果千克,此后每天每千克苹果价格会上涨元,进而得出天后每千克苹果的价格为元与的函数关系;(2)根据每千克售价乘以销量等于销售总金额,求出即可;(3)利用总售价-成本-费用=利润,进而求出即可.【详解】根据题意知,;.当时,最大利润12500元,答:该水果店将这批水果存放50天后一次性售出,可以获得最大利润,最大利润为12500元.【点睛】此题主要考查了二次函数的应用以及二次函数最值求法,得出与的函数关系是解题关键.23、(1);(2)点P的坐标为(﹣,0);(3)1【分析】(1)根据待定系数法,即可得到答案;(2)先求出点B的坐标,作点B关于x轴的对称点D,连接AD,交x轴于点P,此时PA+PB的值最小,再求出AD所在直线的解析式,进而即可求解;(3)设直线AB与y轴交于E点,根据S△OAB=S△OBE﹣S△AOE,即可求解.【详解】(1)将点A(﹣1,3)代入y=得:3=,解得:k=﹣3,∴反比例函数的表达式为:y=﹣;(2)把B(b,1)代入y=x+1得:b+1=1,解得:b=﹣3,∴点B的坐标为(﹣3,1),作点B关于x轴的对称点D,连接AD,交x轴于点P,此时PA+PB的值最小,如图,∵点B的坐标为(﹣3,1),∴点D的坐标为(﹣3,﹣1).设直线AD的函数表达式为:y=mx+n,将点A(﹣1,3)、D(﹣3,﹣1)代入y=mx+n,得,解得,∴直线AD的函数表达式为:y=2x+5,当y=0时,2x+5=0,解得:x=﹣,∴点P的坐标为(﹣,0);(3)设直线AB与y轴交于E点,如图,令x=0,则y=0+1=1,则点E的坐标为(0,1),∴S△OAB=S△OBE﹣S△AOE=×1×3﹣×1×1=1.【点睛】本题主要考查反比例函数的图象和性质与一次函数的综合,掌握“马饮水”模型和割补法求面积,是解题的关键.24、(1)证明见解析;(2)证明见解析;(3)tan∠ACD=2﹣.【分析】(1)根据BM为切线,BC平分∠ABM,求得∠ABC的度数,再由直径所对的圆周角为直角,即可求证;(2)根据三角形相似的判定定理证明三角形相似,再由相似三角形对应边成比例,即可求证;(3)由图得到∠ACD=∠ABD,根据各个角之间的关系求出∠AFD的度数,用AD表达出其它边的边长,再代入正切公式即可求得.【详解】(1)∵BM是以AB为直径的⊙O的切线,∴∠ABM=90°,∵BC平分∠ABM,∴∠ABC=∠ABM=45°∵AB是直径∴∠ACB=90°,∴∠CAB=∠CBA=45°∴AC=BC∴△ACB是等腰直角三角形;(2)如图,连接OD,OC∵DE=EO,DO=CO∴∠EDO=∠EOD,∠EDO=∠OCD∴∠EDO=∠EDO,∠EOD=∠OCD∴△EDO∽△ODC∴∴OD2=DEDC∴OA2=DEDC=EODC(3)如图,连接BD,AD,DO,作∠BAF=∠DBA,交BD于点F,∵DO=BO∴∠ODB=∠OBD,∴∠AOD=2∠ODB=∠EDO,∵∠CAB=∠CDB=45°=∠EDO+∠ODB=3∠ODB,∴∠ODB=15°=∠OBD∵∠BAF=∠DBA=15°∴AF=BF,∠AFD=30°∵AB是直径∴∠ADB=90°∴AF=2AD,DF=AD∴BD=DF+BF=AD+2AD∴tan∠ACD=tan∠ABD===2﹣【点睛】本题考查圆的切线、角平分线的性质,相似三角形的性质以及三角函数中正切的计算问题,属综合中档题.25、(1)y=﹣x2+;(2)(1,1);(3)当△DMN是等腰三角形时,t的值为,3﹣或1.【解析】试题分析:(1)易得抛物线的顶点为(0,),然后只需运用待定系数法,就可求出抛物线的函数关系表达式;(2)①当点F在第一象限时,如图1,可求出点C的坐标,直线AC的解析式,设正方形OEFG的边长为p,则F(p,p),代入直线AC的解析式,就可求出点F的坐标;②当点F在第二象限时,同理可求出点F的坐标,此时点F不在线段AC上,故舍去;(3)过点M作MH⊥DN于H,如图2,由题可得0≤t≤2.然后只需用t的式子表示DN、DM2、MN2,分三种情况(①DN=DM,②ND=NM,③MN=MD)讨论就可解决问题.试题解析:(1)∵点B是点A关于y轴的对称点,∴抛物线的对称轴为y轴,∴抛物线的顶点为(0,),故抛物线的解析式可设为y=ax2+.∵A(﹣1,2)在抛物线y=ax2+上,∴a+=2,解得a=﹣,∴抛物线的函数关系表达式为y=﹣x2+;(2)①当点F在第一象限时,如图1,令y=0得,﹣x2+=0,解得:x1=3,x2=﹣3,∴点C的坐标为(3,0).设直线AC的解析式为y=mx+n,则有,解得,∴直线AC的解析式为y=﹣x+.设正方形OEFG的边长为p,则F(p,p).∵点F(p,p)在直线y=﹣x+上,∴﹣p+=p,解得p=1,∴点F的坐标为(1,1).②当点F在第二象限时,同理可得:点F的坐标为(﹣3,3),此时点F不在线段AC上,故舍去.综上所述:点F的坐标为(1,1);(3)过点M作MH⊥DN于H,如图2,则OD=t,OE=t+1.∵点E和点C重合时停止运动,∴0≤t≤2.当x=t时,y=﹣t+,则N(t,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论