版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,点O是△ABC的内切圆的圆心,若∠A=80°,则∠BOC为()A.100° B.130°C.50° D.65°2.如图,小颖为测量学校旗杆AB的高度,她在E处放置一块镜子,然后退到C处站立,刚好从镜子中看到旗杆的顶部B.已知小颖的眼睛D离地面的高度CD=1.5m,她离镜子的水平距离CE=0.5m,镜子E离旗杆的底部A处的距离AE=2m,且A、C、E三点在同一水平直线上,则旗杆AB的高度为()A.4.5m B.4.8m C.5.5m D.6m3.如果将抛物线平移,使平移后的抛物线与抛物线重合,那么它平移的过程可以是()A.向右平移4个单位,向上平移11个单位B.向左平移4个单位,向上平移11个单位C.向左平移4个单位,向上平移5个单位D.向右平移4个单位,向下平移5个单位.4.数据4,3,5,3,6,3,4的众数和中位数是()A.3,4 B.3,5 C.4,3 D.4,55.如图所示,把一张矩形纸片对折,折痕为AB,再把以AB的中点O为顶点的平角三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的等腰三角形,那么剪出的等腰三角形全部展开平铺后得到的平面图形一定是A.正三角形 B.正方形 C.正五边形 D.正六边形6.若一元二次方程有两个相等的实数根,则m的值是()A.2 B. C. D.7.如图,已知点A是双曲线y=在第一象限的分支上的一个动点,连接AO并延长交另一分支于点B,过点A作y轴的垂线,过点B作x轴的垂线,两垂线交于点C,随着点A的运动,点C的位置也随之变化.设点C的坐标为(m,n),则m,n满足的关系式为()A.n=-2m B.n=- C.n=-4m D.n=-8.下列关于x的一元二次方程没有实数根的是()A. B. C. D.9.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(-1,0);⑤当1<x<4时,有y2<y1,其中正确的是(
)A.①④⑤ B.①③④⑤ C.①③⑤ D.①②③10.方程3x2-4x-1=0的二次项系数和一次项系数分别为()A.3和4 B.3和-4 C.3和-1 D.3和111.如图,由一些完全相同的小正方体搭成的几何体的左视图和俯视图,则这个几何体的主视图不可能是()A. B. C. D.12.如图所示,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴于点A,点C在函数y=(x>0)的图象上,若OA=1,则k的值为()A.4 B.2 C.2 D.二、填空题(每题4分,共24分)13.双曲线、在第一象限的图像如图,,过上的任意一点,作轴的平行线交于,交轴于,若,则的解析式是_____________.14.如图,二次函数y=x(x﹣3)(0≤x≤3)的图象,记为C1,它与x轴交于点O,A1;将C1点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;……若P(2020,m)在这个图象连续旋转后的所得图象上,则m=_____.15.如图,在平面直角坐标系中,CO、CB是⊙D的弦,⊙D分别与轴、轴交于B、A两点,∠OCB=60º,点A的坐标为(0,1),则⊙D的弦OB的长为____________。16.如图(1),在矩形ABCD中,将矩形折叠,使点B落在边AD上,这时折痕与边AD和BC分别交于点E、点F.然后再展开铺平,以B、E、F为顶点的△BEF称为矩形ABCD的“折痕三角形”.如图(2),在矩形ABCD中,AB=2,BC=4,当“折痕△BEF”面积最大时,点E的坐标为_________________________.17.若二次函数的图像经过点,则的值是_______.18.如果,那么______(用向量、表示向量).三、解答题(共78分)19.(8分)解一元二次方程:x2﹣2x﹣3=1.20.(8分)随着中央电视台《朗读者》节目的播出,“朗读”为越来越多的同学所喜爱,西宁市某中学计划在全校开展“朗读”活动,为了了解同学们对这项活动的参与态度,随机对部分学生进行了一次调查,调查结果整理后,将这部分同学的态度划分为四个类别:.积极参与,.一定参与,.可以参与,.不参与.根据调查结果制作了如下不完整的统计表和统计图.学生参与“朗读”的态度统计表类别人数所占百分比18204合计请你根据以上信息,解答下列问题:(1)______,______,并将条形统计图补充完整;(2)该校有1500名学生,如果“不参与”的人数不超过150人时,“朗读”活动可以顺利开展,通过计算分析这次活动能否顺利开展?(3)“朗读”活动中,九年级一班比较优秀的四名同学恰好是两男两女,从中随机选取两人在班级进行朗读示范,试用画树状图法或列表法求所选两人都是女生的概率,并列出所有等可能的结果.21.(8分)某水果批发商销售每箱进价为40元的苹果.经市场调研发现:若每箱以50元的价格销售,平均每天销售90箱;价格每提高1元,则平均每天少销售3箱.设每箱的销售价为x元(x>50),平均每天的销售量为y箱,该批发商平均每天的销售利润w元.(1)y与x之间的函数解析式为__________;(2)求w与x之间的函数解析式;(3)当x为多少元时,可以获得最大利润?最大利润是多少?22.(10分)如图,在△ABC中,点E在边AB上,点G是△ABC的重心,联结AG并延长交BC于点D.(1)若,用向量、表示向量;(2)若∠B=∠ACE,AB=6,AC=2,BC=9,求EG的长.23.(10分)某兴趣小组为了了解本校学生参加课外体育锻炼情况,随机抽取本校40名学生进行问卷调查,统计整理并绘制了如下两幅尚不完整的统计图:根据以上信息解答下列问题:(1)课外体育锻炼情况统计图中,“经常参加”所对应的圆心角的度数为;“经常参加课外体育锻炼的学生最喜欢的一种项目”中,喜欢足球的人数有人,补全条形统计图.(2)该校共有1200名学生,请估计全校学生中经常参加课外体育锻炼并喜欢的项目是乒乓球的人数有多少人?(3)若在“乒乓球”、“篮球”、“足球”、“羽毛球”项目中任选两个项目成立兴趣小组,请用列表法或画树状图的方法求恰好选中“乒乓球”、“篮球”这两个项目的概率.24.(10分)已知二次函数的图象经过点.(1)求这个函数的解析式;(2)画出它的简图,并指出图象的顶点坐标;(3)结合图象直接写出使的的取值范围.25.(12分)我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为的条件下生长最快的新品种.下图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(°C)随时间x(小时)变化的函数图象,其中段是双曲线的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度的时间有________小时;(2)当时,大棚内的温度约为多少度?26.已知:如图,四边形的对角线、相交于点,.(1)求证:;(2)设的面积为,,求证:S四边形ABCD.
参考答案一、选择题(每题4分,共48分)1、B【分析】根据三角形的内切圆得出∠OBC=∠ABC,∠OCB=∠ACB,根据三角形的内角和定理求出∠ABC+∠ACB的度数,进一步求出∠OBC+∠OCB的度数,根据三角形的内角和定理求出即可.【详解】∵点O是△ABC的内切圆的圆心,∴∠OBC=∠ABC,∠OCB=∠ACB.∵∠A=80°,∴∠ABC+∠ACB=180°﹣∠A=100°,∴∠OBC+∠OCB=(∠ABC+∠ACB)=50°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣50°=130°.故选B.【点睛】本题主要考查对三角形的内角和定理,三角形的内切圆与内心等知识点的理解和掌握,能求出∠OBC+∠OCB的度数是解答此题的关键.2、D【分析】根据题意得出△ABE∽△CDE,进而利用相似三角形的性质得出答案.【详解】解:由题意可得:AE=2m,CE=0.5m,DC=1.5m,∵△ABC∽△EDC,∴,即,解得:AB=6,故选D.【点睛】本题考查的是相似三角形在实际生活中的应用,根据题意得出△ABE∽△CDE是解答此题的关键.3、D【分析】根据平移前后的抛物线的顶点坐标确定平移方法即可得解.【详解】解:抛物线的顶点坐标为:(0,),∵,则顶点坐标为:(4,),∴顶点由(0,)平移到(4,),需要向右平移4个单位,再向下平移5个单位,故选择:D.【点睛】本题考查了二次函数图象与几何变换,此类题目,利用顶点的变化确定抛物线解析式更简便.4、A【分析】根据众数和中位数的定义解答即可.【详解】解:在这组数据中出现次数最多的是3,即众数是3;
把这组数据按照从小到大的顺序排列3,3,3,4,4,5,6,
∴中位数为4;
故选:A.【点睛】本题考查一组数据的中位数和众数,一组数据中出现次数最多的数据叫做众数;在求中位数时,首先要把这列数字按照从小到大或从的大到小排列,找出中间一个数字或中间两个数字的平均数即为所求.5、D【解析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【详解】由第二个图形可知:∠AOB被平分成了三个角,每个角为60°,它将成为展开得到图形的中心角,那么所剪出的平面图形是360°÷60°=6边形.故选D.【点睛】本题考查了剪纸问题以及培养学生的动手能力及空间想象能力,此类问题动手操作是解题的关键.6、D【分析】根据一元二次方程根的判别式,即可得到答案【详解】解:∵一元二次方程有两个相等的实数根,∴,解得:;故选择:D.【点睛】本题考查了一元二次方程根的判别式,解题的关键是熟练掌握利用根的判别式求参数的值.7、B【解析】试题分析:首先根据点C的坐标为(m,n),分别求出点A为(,n),点B的坐标为(-,-n),根据图像知B、C的横坐标相同,可得-=m.故选B点睛:此题主要考查了反比例函数的图像上的点的坐标特点,解答此题的关键是要明确:①图像上的点(x,y)的横纵坐标的积是定值k,即xy=k;②双曲线是关于原点对称的,两个分支上的点也是关于原点对称;③在坐标系的图像上任取一点,过这个点向x轴、y轴分别作垂线.与坐标轴围成的矩形的面积是一个定值|k|.8、D【解析】利用一元二次方程的根的判别式逐项判断即可.【详解】一元二次方程的根的判别式为,逐项判断如下:A、,方程有两个不相等的实数根,不符题意B、,方程有两个相等的实数根,符合题意C、,方程有两个不相等的实数根,不符题意D、,方程没有实数根,符合题意故选:D.【点睛】本题考查了一元二次方程的根的判别式,对于一般形式有:(1)当时,方程有两个不相等的实数根;(2)当时,方程有两个相等的实数根;(3)当时,方程没有实数根.9、C【分析】①根据对称轴x=1,确定a,b的关系,然后判定即可;②根据图象确定a、b、c的符号,即可判定;③方程ax2+bx+c=3的根,就y=3的图象与抛物线交点的横坐标判定即可;④根据对称性判断即可;⑤由图象可得,当1<x<4时,抛物线总在直线的上面,则y2<y1.【详解】解:①∵对称轴为:x=1,∴则a=-2b,即2a+b=0,故①正确;∵抛物线开口向下∴a<0∵对称轴在y轴右侧,∴b>0∵抛物线与y轴交于正半轴∴c>0∴abc<0,故②不正确;∵抛物线的顶点坐标A(1,3)∴方程ax2+bx+c=3有两个相等的实数根是x=1,故③正确;∵抛物线对称轴是:x=1,B(4,0),∴抛物线与x轴的另一个交点是(-2,0)故④错误;由图象得:当1<x<4时,有y2<y1;故⑤正确.故答案为C.【点睛】本题考查了二次函数的图像,考查知识点较多,解答的关键在于掌握并灵活应用二次函数知识.10、B【详解】方程3x2-4x-1=0的二次项系数是3,和一次项系数是-4.故选B.11、A【分析】由左视图可得出这个几何体有2层,由俯视图可得出这个几何体最底层有4个小正方体.分情况讨论即可得出答案.【详解】解:由题意可得出这个几何体最底层有4个小正方体,有2层,当第二层第一列有1个小正方体时,主视图为选项B;当第二层第二列有1个小正方体时,主视图为选项C;当第二层第一列,第二列分别有1个小正方体时,主视图为选项D;故选:A.【点睛】本题考查的知识点是简单几何体的三视图,根据所给三视图能够还原几何体是解此题的关键.12、C【分析】作BD⊥AC于D,如图,先利用等腰直角三角形的性质得到AC=1BD,再证得四边形OADB是矩形,利用AC⊥x轴得到C(1,1),然后根据反比例函数图象上点的坐标特征计算k的值.【详解】解:作BD⊥AC于D,如图,∵ABC为等腰直角三角形,∴BD是AC的中线,∴AC=1BD,∵CA⊥x轴于点A,∵AC⊥x轴,BD⊥AC,∠AOB=90°,∴四边形OADB是矩形,∴BD=OA=1,∴AC=1,∴C(1,1),把C(1,1)代入y=得k=1×1=1.故选:C.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了等腰直角三角形的性质.二、填空题(每题4分,共24分)13、【分析】根据y1=,过y1上的任意一点A,得出△CAO的面积为2,进而得出△CBO面积为3,即可得出y2的解析式.【详解】解:∵y1=,过y1上的任意一点A,作x轴的平行线交y2于B,交y轴于C,∴S△AOC=×4=2,∵S△AOB=1,∴△CBO面积为3,∴k=xy=6,∴y2的解析式是:y2=.故答案为y2=.14、1.【分析】x(x﹣3)=0得A1(3,0),再根据旋转的性质得OA1=A1A1=A1A3=…=A673A674=3,所以抛物线C764的解析式为y=﹣(x﹣1019)(x﹣1011),然后计算自变量为1010对应的函数值即可.【详解】当y=0时,x(x﹣3)=0,解得x1=0,x1=3,则A1(3,0),∵将C1点A1旋转180°得C1,交x轴于点A1;将C1绕点A1旋转180°得C3,交x轴于点A3;……∴OA1=A1A1=A1A3=…=A673A674=3,∴抛物线C764的解析式为y=﹣(x﹣1019)(x﹣1011),把P(1010,m)代入得m=﹣(1010﹣1019)(1010﹣1011)=1.故答案为1.【点睛】本题考查图形类规律,解题的关键是掌握图形类规律的基本解题方法.15、【分析】首先连接AB,由∠AOB=90°,可得AB是直径,又由∠OAB=∠OCB=60°,然后根据含30°的直角三角形的性质,求得AB的长,然后根据勾股定理,求得OB的长.【详解】解:连接AB,
∵∠AOB=90°,
∴AB是直径,
∵∠OAB=∠OCB=60°,
∴∠ABO=30°,
∵点A的坐标为(0,1),
∴OA=1,
∴AB=2OA=2,
∴OB=,故选:C.【点睛】此题考查了圆周角定理以及勾股定理.注意准确作出辅助线是解此题的关键.16、(,2).【详解】解:如图,当点B与点D重合时,△BEF面积最大,设BE=DE=x,则AE=4-x,在RT△ABE中,∵EA2+AB2=BE2,∴(4-x)2+22=x2,∴x=,∴BE=ED=,AE=AD-ED=,∴点E坐标(,2).故答案为:(,2).【点睛】本题考查翻折变换(折叠问题),利用数形结合思想解题是关键.17、1【分析】首先根据二次函数的图象经过点得到,再整体代值计算即可.【详解】解:∵二次函数的图象经过点,
∴,
∴,
∴==1,
故答案为1.【点睛】本题主要考查了二次函数图象上点的坐标特征,解题的关键是利用整体代值计算,此题比较简单.18、【分析】将看作关于的方程,解方程即可.【详解】∵∴∴故答案为:【点睛】本题考查平面向量的知识,解题的关键是掌握平面向量的运算法则.三、解答题(共78分)19、x1=﹣1,x2=2.【分析】先把方程左边分解,原方程转化为x+1=1或x﹣2=1,然后解一次方程即可.【详解】解:∵x2﹣2x﹣2=1,∴(x+1)(x﹣2)=1,∴x+1=1或x﹣2=1,∴x1=﹣1,x2=2.【点睛】本题考查了一元二次方程的解法:配方法、公式法和因式分解法.三种方法均可解出方程的根,这里选用的是因式分解法.20、(1),8,补图详见解析;(2)这次活动能顺利开展;(3)(两人都是女生)【分析】(1)先用20除以40%求出样本容量,然后求出a,m的值,并补全条形统计图即可;(2)先求出b的值,用b的值乘以1500,然后把计算的结果与150进行大小比较,则可判断这次活动能否顺利开展;(3)画树状图展示所有12种等可能的结果数,找出所选两人都是女生的结果数为2,然后根据概率公式计算.【详解】解:(1))20÷40%=50人,a=18÷50×100%=36%,m=50×16%=8,(2)b=4÷50×100%=8%,(人)∵∴这次活动能顺利开展.(3)树状图如下:由此可见,共有12种等可能的结果,其中所选两人都是女生的结果数有2种∴(两人都是女生).【点睛】此题考查了统计表和条形统计图的综合,用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件用到的知识点为:概率=所求情况数与总情况数之比.21、(1);(2)w=;(3)当x为60元时,可以获得最大利润,最大利润是1元【分析】(1)设每箱的销售价为x元(x>50),则价格提高了元,平均每天少销售箱,所以平均每天的销售量为,化简即可;(2)平均每天的销售利润每箱的销售利润平均每天的销售量,由此可得关系式;(3)当时(2)中的关于二次函数有最大值,将x的值代入解析式求出最大值即可.【详解】(1).(2)=.w=∴当时,w最大值=1.∴当x为60元时,可以获得最大利润,最大利润是1元.【点睛】本题考查了二次函数的实际应用,正确理解题意,根据题中等量关系列出函数关系式是解题的关键.22、(1)(2)EG=3.【解析】(1)由点G是△ABC的重心,推出再根据三角形法则求出即可解决问题;
(2)想办法证明△AEG∽△ABD,可得【详解】(1)∵点G是△ABC的重心,∴∵∴(2)∵∠B=∠ACE,∠CAE=∠BAC,∴△ACE∽△ABC,∴∴AE=4,此时∵∠EAG=∠BAD,∴△AEG∽△ABD,∴【点睛】考查平面向量的线性运算以及相似三角形的判定与性质,掌握相似三角形的判定方法是解题的关键.23、(1)144°,1;(2)180;(3).【解析】试题分析:(1)用“经常参加”所占的百分比乘以360°计算得到“经常参加”所对应的圆心角的度数;先求出“经常参加”的人数,然后减去其它各组人数得出喜欢足球的人数;进而补全条形图;(2)用总人数乘以喜欢篮球的学生所占的百分比计算即可得解;(3)先利用树状图展示所有12种等可能的结果数,找出选中的两个项目恰好是“乒乓球”、“篮球”所占结果数,然后根据概率公式求解.试题解析:(1)360°×(1﹣15%﹣45%)=360°×40%=144°;“经常参加”的人数为:40×40%=16人,喜欢足的学生人数为:16﹣6﹣4﹣3﹣2=1人;补全统计图如图所示:故答案为:144°,1;(2)全校学生中经常参加课
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度广告制作及拍摄合同
- 2024年度瓷砖供货与支付条款合同
- 2024年度版权使用及授权合同标的
- 2024年度智能玻璃采购合同
- 2024年度不锈钢制品产业链整合合同
- 2024年度互联网健身平台与合作健身房合同
- 2024年度版权转让及许可合同
- 2024年度健身馆合作经营合同标的及合作方式
- 2024年度医疗机构卫生间设施改造承包合同
- 2024年度玛雅房屋租赁合同范本格式
- 《艺术概论》教案-第六章 艺术类型2
- JCT947-2014 先张法预应力混凝土管桩用端板
- 抗肿瘤药物临床合理应用(临床)
- 弱电维护保养方案
- 安全施工管理组织机构图
- 《商业广告设计》课件
- 中国数据中心产业发展白皮书(2023年)
- 剪刀式车升降机施工方案
- 中班语言《小蚂蚁和蒲公英》
- 口腔诊所患者投诉制度范本
- 国家开放大学电大专科《刑法学(1)》案例分析题题库及答案
评论
0/150
提交评论