版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1第4讲全等三角形的判定ABC什么叫全等三角形?两个能完全重合的三角形叫做全等三角形。你还记得吗?AˊBˊCˊABC全等三角形的性质?全等三角形:对应边相等,对应角相等。
△ABC
≌
△A’B’C’AˊBˊCˊAB=A’B’,AC=A’C’,BC=B’C’∠A=∠A’,∠B=∠B’,∠C=∠C’全等三角形共有6组元素(3组对应边、3组对应角)对应角是:∠BOF和∠COE、∠BFO和∠CEO、∠FOB和∠EOC。对应边是:OF和OE、OB和OC、BF和CE。下列全等三角形的对应边和对应角1、△ABE≌△ACF对应角是:∠A和∠A、∠ABE和∠ACF、∠AEB和∠AFC;对应边是AB和AC、AE和AF、BE和CF。2、△BCE≌△CBF对应角是:∠BCE和∠CBF、∠BEC和∠CFB、∠CBE和∠BCF。对应边是:CB和BC、CE和BF、CF和BE。3、△BOF≌△COE找一找议一议:三角形的6组元素(3组对应边、3组对应角)中,要使两个三角形全等,到底需要满足哪些条件?
6选1or6选2(一个角对应相等)——(一条边对应相等)探索////(两条边对应相等)(两个角对应相等)6选1:一个角对应相等的两个三角形不一定全等;一条边对应相等的两个三角形不一定全等;6选2:两个角对应相等的两个三角形不一定全等;两条边对应相等的两个三角形不一定全等;一角和一边对应相等的两个三角形不一定全等;\\\\(一个角、一条边对应相等)==①②可见:要使两个三角形全等,应至少有
组元素对应相等。36选3边边边(SSS)两边一角两角一边角角角两边和它的夹角(SAS)两边和它一边的对角两角和夹边(ASA)两角和一角的对边(AAS)××两边和其中一边的对角对应相等的两个三角形不一定全等。\=\=SSA可见:要使两个三角形全等,应至少有
组元素对应相等。36选3边边边(SSS)两边一角两角一边角角角两边和它的夹角(SAS)两边和它一边的对角两角和夹边(ASA)两角和一角的对边(AAS)××10三个角对应相等的两个三角形不一定全等AAA可见:要使两个三角形全等,应至少有
组元素对应相等。36选3边边边(SSS)两边一角两角一边角角角两边和它的夹角(SAS)两边和它一边的对角两角和夹边(ASA)两角和一角的对边(AAS)××12三角形全等的4个种判定公理:
SSS(边边边)SAS(边角边)ASA(角边角)AAS(角角边)
有三边对应相等的两个三角形全等.
有两边和它们的夹角对应相等的两个三角形全等.
有两角和它们的夹边对应相等的两个三角形全等.
有两角和及其中一个角所对的边对应相等的两个三角形全等.有公共边的,公共边是对应边.有公共角的,公共角是对应角.有对顶角的,对顶角是对应角.一对最长的边是对应边,一对最短的边是对应边.一对最大的角是对应角,一对最小的角是对应角.在找全等三角形的对应元素时一般有什么规律?知识回顾:一般三角形
全等的条件:1.定义(重合)法;2.SSS;3.SAS;4.ASA;5.AAS.直角三角形全等特有的条件:HL.包括直角三角形不包括其它形状的三角形解题中常用的4种方法角的内部到角的两边的距离相等的点在角的平分线上。用法:
∵
QD⊥OA,QE⊥OB,QD=QE.∴点Q在∠AOB的平分线上.角的平分线上的点到角的两边的距离相等.用法:∵
QD⊥OA,QE⊥OB,点Q在∠AOB的平分线上∴QD=QE二.角的平分线:1.角平分线的性质:2.角平分线的判定:定理线段垂直平分线上的点到这条线段两个端点距离相等.老师提示:这个结论是经常用来证明两条线段相等的根据之一.ACBPMN如图,∵AC=BC,MN⊥AB,P是MN上任意一点(已知),∴PA=PB(线段垂直平分线上的点到这条线段两个端点距离相等).引入新知逆定理到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.(如图)ACBPMN∵PA=PB(已知),∴点P在AB的垂直平分线上(即MC垂直平分AB)(到一条线段两个端点距离相等的点,在这条线段的垂直平分线上).老师提示:这个结论是经常用来证明点在直线上(或直线经过某一点)的根据之一.从这个结果出发,你还能联想到什么?想一想例子19练一练一、挖掘“隐含条件”判全等1.如图(1),AB=CD,AC=BD,则△ABC≌△DCB吗?说说理由ADBC图(1)2.如图(2),点D在AB上,点E在AC上,CD与BE相交于点O,且AD=AE,AB=AC.若∠B=20°,CD=5cm,则∠C=,BE=.说说理由.BCODEA图(2)3.如图(3),AC与BD相交于O,若OB=OD,∠A=∠C,若AB=3cm,则CD=.说说理由.ADBCO图(3)20°5cm3cm学习提示:公共边,公共角,对顶角这些都是隐含的边,角相等的条件!204、如图,已知AD平分∠BAC,要使△ABD≌△ACD,根据“SAS”需要添加条件
;根据“ASA”需要添加条件
;根据“AAS”需要添加条件
;ABCDAB=AC∠BDA=∠CDA∠B=∠C友情提示:添加条件的题目.首先要找到已具备的条件,这些条件有些是题目已知条件,有些是图中隐含条件.二.添条件判全等21例、如图,已知AB=AC,AD=AE,AB、DC相交于点M,AC、BE相交于点N,∠1=∠2,试说明:(1)△ABE≌△ACD(2)AM=ANANMEDCB12创造条件!?225、已知:∠B=∠DEF,BC=EF,现要证明△ABC≌△DEF,若要以“SAS”为依据,还缺条件______;若要以“ASA”为依据,还缺条件_______;若要以“AAS”为依据,还缺条件_______并说明理由。.AB=DE∠ACB=∠F∠A=∠DABCDEF23
6.如图(4)AE=CF,∠AFD=∠CEB,DF=BE,△AFD与△CEB全等吗?为什么?解:∵AE=CF(已知)ADBCFE∴AE-FE=CF-EF(等量减等量,差相等)即AF=CE在△AFD和△CEB中,
∴△AFD≌△CEB∠AFD=∠CEB(已知)DF=BE(已知)AF=CE(已证)(SAS)247.如图(5)∠CAE=∠BAD,∠B=∠D,AC=AE,△ABC与△ADE全等吗?为什么?ACEBD解:∵∠CAE=∠BAD(已知)∴∠CAE+∠BAE=∠BAD+∠BAE
(等量减等量,差相等)即∠BAC=∠DAE在△ABC和△ADE中,
∴△ABC≌△ADE∠BAC=∠DAE(已证)AC=AE(已知)∠B=∠D(已知)(AAS)练一练268.“三月三,放风筝”如图(6)是小东同学自己做的风筝,他根据AB=AD,BC=DC,不用度量,就知道∠ABC=∠ADC。请用所学的知识给予说明。解:连接AC∴△ADC≌△ABC(SSS)∴
∠ABC=∠ADC(全等三角形的对应角相等)在△ABC和△ADC中,
BC=DC(已知)AC=AC(公共边)AB=AD(已知)如图,已知AB是线段CD的垂直平分线,E是AB上的一点,如果EC=7cm,那么ED=
cm;如果∠ECD=600,那么∠EDC=
0.老师期望:你能说出填空结果的根据.EDABC760课堂练习28实际运用9.测量如图河的宽度,某人在河的对岸找到一参照物树木A,视线AB与河岸垂直,然后该人沿河岸步行10步(每步约0.75M)到O处,进行标记,再向前步行10步到D处,最后背对河岸向前步行20步,此时树木A,标记O,恰好在同一视线上,则河的宽度为
米。15ABODC2911.如图,M是AB的中点,∠1=2,MC=MD.试说明ΔACM≌ΔBDMABMCD()12证明:∵M是AB的中点(已知)∴MA=MB(中点定义)
在ΔACM和ΔBDM中,
MA=MB(已证)∠1=∠2(已知)MC=MD(已知)∴ΔACM≌ΔBDM(SAS)3012.如图,M、N分别在AB和AC上,CM与BN相交于点O,若BM=CN,∠B=∠C.请找出图中所有相等的线段,并说明理由.
COBAMN3、如图,OB⊥AB,OC⊥AC,垂足为B,C,OB=OCAO平分∠BAC吗?为什么?OCBA答:AO平分∠BAC理由:∵OB⊥AB,OC⊥AC∴∠B=∠C=90°
在Rt△ABO和Rt△ACO中
OB=OCAO=AO∴Rt△ABO≌Rt△ACO
(HL)∴∠BAO=∠CAO∴AO平分∠BAC9、如图,已知E在AB上,∠1=∠2,∠3=∠4,那么AC等于AD吗?为什么?4321EDCBA解:AC=AD理由:在△EBC和△EBD中∠1=∠2∠3=∠4EB=EB∴△EBC≌△EBD(AAS)∴BC=BD在△ABC和△ABD中
AB=AB
∠1=∠2BC=BD∴△ABC≌△ABD(SAS)
∴AC=AD3314、已知:ΔABC和ΔBDE是等边三角形,点D在AE的延长线上。求证:BD+DC=AD
ABCDE分析:∵AD=AE+ED∴只需证:BD+DC=AE+ED∵BD=ED∴只需证DC=AE即可。3416.如图,在四边形ABCD中,已知AB=AD,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年山西客运从业资格证急救考试试题教程图片
- 临沂大学《插画设计》2021-2022学年第一学期期末试卷
- 2024北京初三(上)期末英语汇编:材料作文
- 临沂大学《EDA技术与应用》2021-2022学年第一学期期末试卷
- 聊城大学东昌学院《企业资源规划》2022-2023学年第一学期期末试卷
- 聊城大学东昌学院《古代汉语专题(一)》2022-2023学年第一学期期末试卷
- 2024年工程监理总承合同
- 2024年合资合同:共创辉煌共享成果
- 2024年体育赛事录像转播合同
- 2024年学生生物科学探索班合同
- 租地种香蕉合同
- 旧市场提升改造方案
- 统编版 七年级上册(2024修订) 第四单元 13 纪念白求恩 课件
- 副总经理招聘面试题及回答建议(某大型国企)
- 期中测试卷(试题)-2024-2025学年统编版语文五年级上册
- 建筑工地台风过后复工复产工作方案
- 借款协议(父母借款给子女买房协议)(二篇)
- 税务师涉税服务相关法律真题2021年
- 2024年太仓市城市建设投资集团限公司公开招聘3人高频难、易错点500题模拟试题附带答案详解
- 外汇兑换居间劳务协议
- 琴行培训机构合同协议书
评论
0/150
提交评论