版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Collaborativelosslessvisualizationofn-DdatabyCollocatedPairedCoordinates(CPC)BorisKovalerchuk1,VladimirGrishin
2
1Dept.ofComputerScience,CentralWashingtonUniversity2ViewTrendsInternationalMotivationThegoalofmultivariate,multidimensionalvisualizationisrepresentingn-tuples(n-Dvectors)in2-Dor3-Dtoenhancen-Ddatapatterndiscovery.Oftenmultidimensionaldataarevisualizedbylossydimensionreduction(PCA)andsplittingn-Ddatatoasetoflowdimensionaldata(pairwisecorrelationplots).PCA-PrincipalComponentAnalysisWhilesplittingisusefulitdestroysintegrityofn-Ddata,andleadstoashallowunderstandingcomplexn-Ddata.Tomitigatesplittingdifficultyanadditionalanddifficultperceptualtaskofassemblinglow-dimensionalvisualizedpiecesofeachrecordtothewholen-Drecordmustbesolved.Analternativewayfordeeperunderstandingofn-Ddataisdevelopingvisualrepresentationsofn-Ddatainlowdimensionswithoutsuchdatasplitting.E.g.,ParallelandRadialcoordinates.(0.5,0.4,0,0.6,0.5,1)MotivationVisualshapeperceptionsupplies95-98%ofinformationforpatternrecognition.However,recentvisualizationtechniquesdonotuseitefficiently[4,5].Multipleopportunitiestoimproveareemerging.
Thispapercontinuesourlong-termefforts[1-3]onenhancementofvisualizationperformance.Wefocusonimprovingamodernlossymappingofmultidimensionaldataspaceonto2-Dplane,bycreatinglosslessmappingofn-Dto2-D.OurCollaborativeApproachtoEnhanceVisualization(CAEV)(1)ShapePriorityforPerceptionandCommunication:MoreeffectiveusageofhumanvisioncapabilitiesofshapeperceptionbyPolardisplays(Stars),whichadvantagesofvs.ParallelCoordinates(PCs)forshaperecognitionfollowingfromGestaltandhaveconfirmedbyourpsychologicalexperimentsfordetectionofhyper-tubesand-planesstructureswithdimensionupto100.Itselectsfeaturesandclassifiesobjects2-3timesfasterthanwithPCs[8].(2)LosslessDisplays,asanalternativewayforlossyvisualizationPrimaryusageofvisualrepresentationsin2-Dthatfullypreservesn-Ddata,suchaslosslessmethodsofParallelandRadialcoordinates,someheatmaps,etc.,whichprovideclearinterpretationoffigurefeaturesintermsofdataproperties.(3)QuantitativeModelingoftheDataStructureRecognitionwithdifferentformsofdatadisplays.Thisisabasistochooseandadjuststructuresashyper–tubes,hyper-planes,hyper-spheres,etc.Wefocusonaformaldatastructurestoenhancegeneralizationofvisualizationincombinationwithaninteractivecollaborativevisualizationapproach.ReviewofLineCoordinatesTypeCharacteristicsGeneralLineCoordinates(GLC)Drawingncoordinateaxesin2Dinvarietyofways:curved,parallel,unparalleled,collocated,disconnected,etc.CollocatedPairedCoordinates(CPC)in2-DSplittingann-Dvectorxintopairsofitscoordinates(x1,x2),…,(xn-1,xn);drawingeachpairas2-Dpointinthesametwoaxesontheplane;andlinkingthesepointstoformanorientedgraphfromthesepointsforeachn-Dvector.CollocatedPairedCoordinates(CPC)in3-DSplittingncoordinatesintotriplesandrepresentingeachpairas3-Dpointinthesamethreeaxes;andlinkingthesepointstoformanorientedgraphforeachn-Dvector.ShiftedPairedCoordinates(SPC)Drawingeachnextpairintheshiftedcoordinatesystem(incontrastwithCPC).X1X2CartesianCoordinatesCollocatedPairedCoordinatesTheideaofthepairedcoordinatesisconvertingasimplestringofelementsofvectorx=(x1,x2,…xn)incoordinatesX1,X2,…,Xntoamorecomplexstructurewithconsecutive2-Delements(pairs)forevenn:{(x1,x2)(x3,x4),…,(xi,xi+1),…,(xn-3,xn-2),(xn-1,xn)}.ThescalesofcoordinatesX1-Xnarenormalizedtosomeinterval,e.g.,[0,1]andconstructedpairs(xi,xi+1)areplottedonthesame(X,Y)2-Dplane.Theexamplebelowillustratesthisprocess.Examplein6-D:astatevectorx=(x,y,x`,y`,x``,y``),xandyarelocationoftheobject,x`andy`arevelocities(derivatives),andx``andy``areaccelerations(secondderivatives)ofthisobject.Themainstepsofthealgorithm:Groupingattributesintoconsecutivepairs(x,y)(x`,y`)(x``,y``),PlottingeachpairinthesameorthogonalnormalizedCartesiancoordinatesXandY,andPlottingadirectedgraph(x,y)(x`,y`)(x``,y``)withdirectedpathsfrom(x,y)to(x`,y`)andfrom(x`,y`)to(x``,y``).Thesamevectorxintheparallelcoordinates.requires5linestoshowx,incontrastcollocatedcoordinatesrequireonly2lines,whichleadtolessclutterwhenmultiplen-Dvectorsarevisualized.ThisisanadvantageofthePairedCoordinates.PairedCoordinatesandLineCoordinatesTheShiftedPairedCoordinates(SPC)showeachnextpairintheshiftedcoordinatesystem.Thefirstpair(5,4)isdrawninthe(X,Y)system,pair(0,6)isdrawninthe(X+1,Y+1)coordinatesystem,andpair(4,6)isdrawninthe(X+2,Y+2)coordinatesystem.
Forvector(5,4,0,6,4,10),thegraphconsistsofthearrows:from(5,4)to(1,1)+(0,6)=(1,7)thenfrom(1,7)to(2,2)+(4,10)=(6,12).AnchoredPairedCoordinates(APC)TheAnchoredPairedCoordinates(APC)representeachnextpairstartingatthefirstpairthatservesan“anchor”.pairs(x`,y`)and(x``,y``)arerepresentedasvectorsthatstartatanchorpoint(x,y)withplottingvectors((x,y),(x+x`,x+y`))and((x,y),(x+x``,x+y``)).TheadvantageoftheAPCisthatthedirectionhasameaningasactualvectorsofvelocityandaccelerationinthisexample.Inthetraditionalradialcoordinatedthedirectionsarearbitrary.CircularCoordinatesN-gonCoordinatesStraightlinesGeospatialdatavisualizationCircularandn-gonecoordinatescanbeusedtoshowgeo-referenceddataifn-Dvectorscontainlocationcoordinates,say(x1,x2).Anyotherpairofcoordinatescanserveaspseudo-location.Thesetwocoordinatesareusedtoidentifylocationofthecenterofthecircleandothern-2coordinatesareusedtobuildacircleor(n-2)-gonwithappropriatescalingtoavoidoverlap.(x1,x,2,x3,x4,…,xn)Resultsoflosslessn-DdatavisualizationsCollaborativeApproachtoEnhancevisualization(CAEV)Thegeneratedfiguresalloweffectiven-Ddatastructureanalysisbymeansofcollaborativeshapeperception.Visualizationoflargen-Ddatasetsforpatterndiscoverycanbeaccomplishedcollaborativelybysplittingadatasetandtasksbetweencollaboratingagents,whichincludebothhumansandsoftwareagents.Eachagentanalyzesandvisualizesasubsetofdataand/ortasksandexchangesfindingswithotheragents.Splittingofactivitiestosupportcollaborationbasedon:Locationofdataonn-Dspace(eachagentworksofthedatafromaspecificlocationonn-Dspaceproducedbydataclustering).Classofdata(eachagentworksonlyonthedataofaspecificclass/classes),Attributesofdata(eachagentworksonlyontheprojectionofdatatothespecificsubsetofattributes.)Tasks(agentsarespecializedondifferentvisualtasks).Dataarenotsplit,butorganizedandvisualizeddifferently,e.g.,
different
orderoftheattributespresentedtodifferentagents.Visualizationinparallelcoordinatesandpairedcoordinatesaresensitivetothischange.CollaborativeApproachtoEnhancevisualization(CAEV)Thegeneratedfiguresalloweffectiven-Ddatastructureanalysisbymeansofcollaborativeshapeperception.Visualizationoflargen-Ddatasetsforpatterndiscoverycanbeaccomplishedcollaborativelybysplittingadatasetandtasksbetweencollaboratingagents,whichincludebothhumansandsoftwareagents.Eachagentanalyzesandvisualizesasubsetofdataand/ortasksandexchangesfindingswithotheragentsusingacollaborationplatform.CollaborationplatformJointvisualsolutionAgenttask4/data4Agent1task1/data1Agent2task2/data2Agent3task3/data3Splittingofagents’activitiesBasedon:Locationofdata
onn-Dspace(eachagentworksofthedatafromaspecificlocationonn-Dspaceproducedbydataclustering).Classofdata
(eachagentworksonlyonthedataofaspecificclass/classes),Attributesofdata
(eachagentworksonlyontheprojectionofdatatothespecificsubsetofattributes.)Tasks
(agentsarespecializedondifferentvisualtasks).Dataarenotsplit,butorganizedandvisualizeddifferently,e.g.,
different
orderoftheattributespresentedtodifferentagents.Visualizationinparallelcoordinatesandpairedcoordinatesaresensitivetothischange.CollaborationwithtaskssplittingTaskT1onn-Ddatasubsetofagent1
TaskT2onn-Ddatasubsetofagent2TaskT3onn-Ddatasubsetofagent3
TaskT4onn-Ddatasubsetofagent4TaskT1onn-Ddatasubsetofagent1Simple?simplesimplecomplexTaskT3onn-Ddatasubsetofagent3TaskT2onn-Ddatasubsetofagent2Differentagentsanalyzedifferentvisualizationsofthesamedataonfoundpatternsandexchangeconclusions.Advantagesoflosslessvisualizations
Themotivationforanewclassofcoordinatesistwo-fold:thereisaverylimitednumberofavailablelosslessvisualizationmethodsofn-Ddata,andthereisnosilverbulletvisualizationthatisperfectforallpossibledatasets.Ourexperiments[2]hadshownthebenefitsofnewvisualizationsforWorldHungerdata,ChallengerDisaster,aswellasonmodeleddatavs.ParallelCoordinates(PCs).IntheexamplesaboveCPCrevealastructureofspecificdataclearerthantheparallelcoordinates.Whatareadvantagesoflosslesscollaborativevisualizations?Atfirstglancemanyrelationscanbeeasilydiscoveredanalyticallywithoutcollaborativevisualization.Infact,theanalyticaldiscoveringissearchinginanassumedclassofrelationsthatis
difficulttoguess.Analyticalsearchisdifficultinaverylargeclassofrelations--aneedleinahaystack.Thevisualcollaborativeautomatedapproachassistedbysoftwareagentshelpstoidentifyandtonarrowthisclass.Itcaneveneliminatetheanalyticalstage,ifweonlyneedtoknowthatarelationthatseparatestwoclassesexists.Analternativecollaborative“manual”wayoftenisnotscalable
becausewecannotlookthroughlargedatatablestodiscovertherelation.Itisaslow
sequential
process,whiletheobservingthatimagesinthevisualizationisafastparallelprocess.MathStatementsonlosslessvisualizationsBelowwedescribedatafeaturesthatcanbevisuallyestimatedusingCPC.Apoint
WisproducedbytheformulaW=A+tv,whereAisann-Dpoint,visann-Dvector,andtisascalar.Alinearsegmentinn-Disasetofpoint{W:W=A+tv,t[a,b]}.Statement.Ann-DlinearsegmentisrepresentedasasetofshiftedgraphsinCPC.Fortheproofseethepaper.Note:Directionsofthelinearshiftscandifferfordifferentpoints/nodesofthesamegraph.
Considertwoclassesofn-Dvectorsthatsatisfytwodifferentlinearrelations:W=A+tvandU=B+tq.
ThesedatawillberepresentedinCPCastwosetsofgraphsshiftedinvandqdirections,respectively.IfW=A+tv+e,whereeisanoisevector,thenwehavegraphsforn-DpointsWinthe“tube”withitswidthdefinedbye.CollaborativevisualizationVisualfeaturesthatCPCsupports.
HumanscanestimatethefollowingvisualfeaturesinCPCgraphs:typesofangles(e.g.,sharpangle),orientationanddirectionoflinesandangles,lengthofthelines,coloroflines,widthofthelength(asrepresentationofthenumberofvectorswithsuchvalues),widthandlengthofthecurves(Beziercurves),numberofcrossingofedgesofagraph,directionsofcrossededges,shapeofanenvelopethatcontainsthegraph,a“type”ofthegraph(dominantdirectionorabsenceofit:knot,L-shape,horizontal,vertical,Northwest,etc),relationsbetweengraphsofdifferentn-Ddataplottedonthesameplane.Tomakethisanalysisfasteragentscollaboratebydividinganalysisofthesefeaturesbetweenthemandbyexchangingresultsofanalysis:Findingrelationsbetweengraphsincludes:identifyingpropertiessuchas:parallel,rotated,affinetransformedrelativetoeachother,percentageofoverlap,thesize,andshapeoftheareaoftheoverlapofenvelopes,thedistance.xt=(xt1,xt2,…,xt8)isgivenbytheformula:(xt3=xt1)&(xt4=xt2+2)&(xt5=xt1+2)&(xt6=xt4)&(xt7=xt5)&(xt8=xt2).xt=(xt1,xt2,…,xt8)andxt+1=(xt+1,1,xt+1,2,…,xt+1,8)isgivenbytheformulas:xt+1,i=3xti,i=1,3,5,7andxt+1,i=xt,i,i=2,4,6,8.Hereoddattributesgrowlinearlyandevenattributesareconstants.TubesThebottomfiguresshowthatallobjectshavethesamestructureinCPCthatislessevidentinparallelcoordinatesintheupperfigures.Thesearethesameshapesjustshifted.Intheparallelcoordinatestheshapesarenotidentical,butsimilar.Itiseasiertoseeidenticalshapesthansimilarshapes.AgentsandLosslessVisualizationFigures(a)and(c)showtubes(cylinders)in3-Dwithpointsincolors.Thematchedgraphs(lines)ofCPCrepresentationsareshowninthesamecolorsin(b)forthethreelefttubesandin(d)fromtheforth(left)tube.In2-Dvisualizationallobjectswithineachpipehavepracticallythesamedirections,similarlengthsandlocatedclosely.Thesesimilaritieshelpacollaboratingagenttodistinguishthemfromdatafromotherpipes.Thisiscriticalforthesuccessofcollaborativen-Ddatavisualanalysis.Such2-DlosslessCPCrepresentationallowsdistinguishingclassesvisually.Eachagentworksontheindividualclassandcanextractvisualfeaturesofeachclassandthenagentscombinetheirfeaturesasajointdescriptionofcharacteristicsthatdiscriminateclasses.ThisspeedsupthetotalvisualdiscoverycollaborativelyVisualseparationvs.AnalyticalseparationofclassesOurstudieshadshownthateverywherewhereotherlosslessvisualizations(parallelandradialcoordinates)areuseful,CPCalsouseful.Woulditbedifficulttoseparatenon-overlappinghyper-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年汽车电子产品项目投资申请报告代可行性研究报告
- 系绳物体的浮力问题-2023年中考物理复习讲练(原卷版)
- 知识产权保护承诺书
- 美丽的颐和园导游词(33篇)
- 物流运输车辆租赁合同(35篇)
- 粗砂垫层试验段的施工方案及试验段总结
- 23.1 平均数与加权平均数 同步练习
- 天津市南开区2024-2025学年七年级上学期11月期中道德与法治试题(含答案)
- 2024年建筑电工(建筑特殊工种)考试试题题库
- 黑龙江省大庆市肇源县联盟学校2024-2025学年七年级上学期11月期中生物试题(含答案)
- 2024年宏观经济发展情况分析报告
- 摄影入门课程-摄影基础与技巧全面解析
- 251直线与圆的位置关系(第1课时)(导学案)(原卷版)
- XX有限公司人员分流方案
- 大语言模型赋能自动化测试实践、挑战与展望-复旦大学(董震)
- 期中模拟检测(1-3单元)2024-2025学年度第一学期西师大版二年级数学
- 追觅科技在线测评逻辑题
- 2025年广东省高中学业水平考试春季高考数学试题(含答案解析)
- 2024年重庆市渝北区数据谷八中小升初数学试卷
- 凝中国心铸中华魂铸牢中华民族共同体意识-小学民族团结爱国主题班会课件
- 2024年AI大模型场景探索及产业应用调研报告-前瞻
评论
0/150
提交评论