




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Collaborativelosslessvisualizationofn-DdatabyCollocatedPairedCoordinates(CPC)BorisKovalerchuk1,VladimirGrishin
2
1Dept.ofComputerScience,CentralWashingtonUniversity2ViewTrendsInternationalMotivationThegoalofmultivariate,multidimensionalvisualizationisrepresentingn-tuples(n-Dvectors)in2-Dor3-Dtoenhancen-Ddatapatterndiscovery.Oftenmultidimensionaldataarevisualizedbylossydimensionreduction(PCA)andsplittingn-Ddatatoasetoflowdimensionaldata(pairwisecorrelationplots).PCA-PrincipalComponentAnalysisWhilesplittingisusefulitdestroysintegrityofn-Ddata,andleadstoashallowunderstandingcomplexn-Ddata.Tomitigatesplittingdifficultyanadditionalanddifficultperceptualtaskofassemblinglow-dimensionalvisualizedpiecesofeachrecordtothewholen-Drecordmustbesolved.Analternativewayfordeeperunderstandingofn-Ddataisdevelopingvisualrepresentationsofn-Ddatainlowdimensionswithoutsuchdatasplitting.E.g.,ParallelandRadialcoordinates.(0.5,0.4,0,0.6,0.5,1)MotivationVisualshapeperceptionsupplies95-98%ofinformationforpatternrecognition.However,recentvisualizationtechniquesdonotuseitefficiently[4,5].Multipleopportunitiestoimproveareemerging.
Thispapercontinuesourlong-termefforts[1-3]onenhancementofvisualizationperformance.Wefocusonimprovingamodernlossymappingofmultidimensionaldataspaceonto2-Dplane,bycreatinglosslessmappingofn-Dto2-D.OurCollaborativeApproachtoEnhanceVisualization(CAEV)(1)ShapePriorityforPerceptionandCommunication:MoreeffectiveusageofhumanvisioncapabilitiesofshapeperceptionbyPolardisplays(Stars),whichadvantagesofvs.ParallelCoordinates(PCs)forshaperecognitionfollowingfromGestaltandhaveconfirmedbyourpsychologicalexperimentsfordetectionofhyper-tubesand-planesstructureswithdimensionupto100.Itselectsfeaturesandclassifiesobjects2-3timesfasterthanwithPCs[8].(2)LosslessDisplays,asanalternativewayforlossyvisualizationPrimaryusageofvisualrepresentationsin2-Dthatfullypreservesn-Ddata,suchaslosslessmethodsofParallelandRadialcoordinates,someheatmaps,etc.,whichprovideclearinterpretationoffigurefeaturesintermsofdataproperties.(3)QuantitativeModelingoftheDataStructureRecognitionwithdifferentformsofdatadisplays.Thisisabasistochooseandadjuststructuresashyper–tubes,hyper-planes,hyper-spheres,etc.Wefocusonaformaldatastructurestoenhancegeneralizationofvisualizationincombinationwithaninteractivecollaborativevisualizationapproach.ReviewofLineCoordinatesTypeCharacteristicsGeneralLineCoordinates(GLC)Drawingncoordinateaxesin2Dinvarietyofways:curved,parallel,unparalleled,collocated,disconnected,etc.CollocatedPairedCoordinates(CPC)in2-DSplittingann-Dvectorxintopairsofitscoordinates(x1,x2),…,(xn-1,xn);drawingeachpairas2-Dpointinthesametwoaxesontheplane;andlinkingthesepointstoformanorientedgraphfromthesepointsforeachn-Dvector.CollocatedPairedCoordinates(CPC)in3-DSplittingncoordinatesintotriplesandrepresentingeachpairas3-Dpointinthesamethreeaxes;andlinkingthesepointstoformanorientedgraphforeachn-Dvector.ShiftedPairedCoordinates(SPC)Drawingeachnextpairintheshiftedcoordinatesystem(incontrastwithCPC).X1X2CartesianCoordinatesCollocatedPairedCoordinatesTheideaofthepairedcoordinatesisconvertingasimplestringofelementsofvectorx=(x1,x2,…xn)incoordinatesX1,X2,…,Xntoamorecomplexstructurewithconsecutive2-Delements(pairs)forevenn:{(x1,x2)(x3,x4),…,(xi,xi+1),…,(xn-3,xn-2),(xn-1,xn)}.ThescalesofcoordinatesX1-Xnarenormalizedtosomeinterval,e.g.,[0,1]andconstructedpairs(xi,xi+1)areplottedonthesame(X,Y)2-Dplane.Theexamplebelowillustratesthisprocess.Examplein6-D:astatevectorx=(x,y,x`,y`,x``,y``),xandyarelocationoftheobject,x`andy`arevelocities(derivatives),andx``andy``areaccelerations(secondderivatives)ofthisobject.Themainstepsofthealgorithm:Groupingattributesintoconsecutivepairs(x,y)(x`,y`)(x``,y``),PlottingeachpairinthesameorthogonalnormalizedCartesiancoordinatesXandY,andPlottingadirectedgraph(x,y)(x`,y`)(x``,y``)withdirectedpathsfrom(x,y)to(x`,y`)andfrom(x`,y`)to(x``,y``).Thesamevectorxintheparallelcoordinates.requires5linestoshowx,incontrastcollocatedcoordinatesrequireonly2lines,whichleadtolessclutterwhenmultiplen-Dvectorsarevisualized.ThisisanadvantageofthePairedCoordinates.PairedCoordinatesandLineCoordinatesTheShiftedPairedCoordinates(SPC)showeachnextpairintheshiftedcoordinatesystem.Thefirstpair(5,4)isdrawninthe(X,Y)system,pair(0,6)isdrawninthe(X+1,Y+1)coordinatesystem,andpair(4,6)isdrawninthe(X+2,Y+2)coordinatesystem.
Forvector(5,4,0,6,4,10),thegraphconsistsofthearrows:from(5,4)to(1,1)+(0,6)=(1,7)thenfrom(1,7)to(2,2)+(4,10)=(6,12).AnchoredPairedCoordinates(APC)TheAnchoredPairedCoordinates(APC)representeachnextpairstartingatthefirstpairthatservesan“anchor”.pairs(x`,y`)and(x``,y``)arerepresentedasvectorsthatstartatanchorpoint(x,y)withplottingvectors((x,y),(x+x`,x+y`))and((x,y),(x+x``,x+y``)).TheadvantageoftheAPCisthatthedirectionhasameaningasactualvectorsofvelocityandaccelerationinthisexample.Inthetraditionalradialcoordinatedthedirectionsarearbitrary.CircularCoordinatesN-gonCoordinatesStraightlinesGeospatialdatavisualizationCircularandn-gonecoordinatescanbeusedtoshowgeo-referenceddataifn-Dvectorscontainlocationcoordinates,say(x1,x2).Anyotherpairofcoordinatescanserveaspseudo-location.Thesetwocoordinatesareusedtoidentifylocationofthecenterofthecircleandothern-2coordinatesareusedtobuildacircleor(n-2)-gonwithappropriatescalingtoavoidoverlap.(x1,x,2,x3,x4,…,xn)Resultsoflosslessn-DdatavisualizationsCollaborativeApproachtoEnhancevisualization(CAEV)Thegeneratedfiguresalloweffectiven-Ddatastructureanalysisbymeansofcollaborativeshapeperception.Visualizationoflargen-Ddatasetsforpatterndiscoverycanbeaccomplishedcollaborativelybysplittingadatasetandtasksbetweencollaboratingagents,whichincludebothhumansandsoftwareagents.Eachagentanalyzesandvisualizesasubsetofdataand/ortasksandexchangesfindingswithotheragents.Splittingofactivitiestosupportcollaborationbasedon:Locationofdataonn-Dspace(eachagentworksofthedatafromaspecificlocationonn-Dspaceproducedbydataclustering).Classofdata(eachagentworksonlyonthedataofaspecificclass/classes),Attributesofdata(eachagentworksonlyontheprojectionofdatatothespecificsubsetofattributes.)Tasks(agentsarespecializedondifferentvisualtasks).Dataarenotsplit,butorganizedandvisualizeddifferently,e.g.,
different
orderoftheattributespresentedtodifferentagents.Visualizationinparallelcoordinatesandpairedcoordinatesaresensitivetothischange.CollaborativeApproachtoEnhancevisualization(CAEV)Thegeneratedfiguresalloweffectiven-Ddatastructureanalysisbymeansofcollaborativeshapeperception.Visualizationoflargen-Ddatasetsforpatterndiscoverycanbeaccomplishedcollaborativelybysplittingadatasetandtasksbetweencollaboratingagents,whichincludebothhumansandsoftwareagents.Eachagentanalyzesandvisualizesasubsetofdataand/ortasksandexchangesfindingswithotheragentsusingacollaborationplatform.CollaborationplatformJointvisualsolutionAgenttask4/data4Agent1task1/data1Agent2task2/data2Agent3task3/data3Splittingofagents’activitiesBasedon:Locationofdata
onn-Dspace(eachagentworksofthedatafromaspecificlocationonn-Dspaceproducedbydataclustering).Classofdata
(eachagentworksonlyonthedataofaspecificclass/classes),Attributesofdata
(eachagentworksonlyontheprojectionofdatatothespecificsubsetofattributes.)Tasks
(agentsarespecializedondifferentvisualtasks).Dataarenotsplit,butorganizedandvisualizeddifferently,e.g.,
different
orderoftheattributespresentedtodifferentagents.Visualizationinparallelcoordinatesandpairedcoordinatesaresensitivetothischange.CollaborationwithtaskssplittingTaskT1onn-Ddatasubsetofagent1
TaskT2onn-Ddatasubsetofagent2TaskT3onn-Ddatasubsetofagent3
TaskT4onn-Ddatasubsetofagent4TaskT1onn-Ddatasubsetofagent1Simple?simplesimplecomplexTaskT3onn-Ddatasubsetofagent3TaskT2onn-Ddatasubsetofagent2Differentagentsanalyzedifferentvisualizationsofthesamedataonfoundpatternsandexchangeconclusions.Advantagesoflosslessvisualizations
Themotivationforanewclassofcoordinatesistwo-fold:thereisaverylimitednumberofavailablelosslessvisualizationmethodsofn-Ddata,andthereisnosilverbulletvisualizationthatisperfectforallpossibledatasets.Ourexperiments[2]hadshownthebenefitsofnewvisualizationsforWorldHungerdata,ChallengerDisaster,aswellasonmodeleddatavs.ParallelCoordinates(PCs).IntheexamplesaboveCPCrevealastructureofspecificdataclearerthantheparallelcoordinates.Whatareadvantagesoflosslesscollaborativevisualizations?Atfirstglancemanyrelationscanbeeasilydiscoveredanalyticallywithoutcollaborativevisualization.Infact,theanalyticaldiscoveringissearchinginanassumedclassofrelationsthatis
difficulttoguess.Analyticalsearchisdifficultinaverylargeclassofrelations--aneedleinahaystack.Thevisualcollaborativeautomatedapproachassistedbysoftwareagentshelpstoidentifyandtonarrowthisclass.Itcaneveneliminatetheanalyticalstage,ifweonlyneedtoknowthatarelationthatseparatestwoclassesexists.Analternativecollaborative“manual”wayoftenisnotscalable
becausewecannotlookthroughlargedatatablestodiscovertherelation.Itisaslow
sequential
process,whiletheobservingthatimagesinthevisualizationisafastparallelprocess.MathStatementsonlosslessvisualizationsBelowwedescribedatafeaturesthatcanbevisuallyestimatedusingCPC.Apoint
WisproducedbytheformulaW=A+tv,whereAisann-Dpoint,visann-Dvector,andtisascalar.Alinearsegmentinn-Disasetofpoint{W:W=A+tv,t[a,b]}.Statement.Ann-DlinearsegmentisrepresentedasasetofshiftedgraphsinCPC.Fortheproofseethepaper.Note:Directionsofthelinearshiftscandifferfordifferentpoints/nodesofthesamegraph.
Considertwoclassesofn-Dvectorsthatsatisfytwodifferentlinearrelations:W=A+tvandU=B+tq.
ThesedatawillberepresentedinCPCastwosetsofgraphsshiftedinvandqdirections,respectively.IfW=A+tv+e,whereeisanoisevector,thenwehavegraphsforn-DpointsWinthe“tube”withitswidthdefinedbye.CollaborativevisualizationVisualfeaturesthatCPCsupports.
HumanscanestimatethefollowingvisualfeaturesinCPCgraphs:typesofangles(e.g.,sharpangle),orientationanddirectionoflinesandangles,lengthofthelines,coloroflines,widthofthelength(asrepresentationofthenumberofvectorswithsuchvalues),widthandlengthofthecurves(Beziercurves),numberofcrossingofedgesofagraph,directionsofcrossededges,shapeofanenvelopethatcontainsthegraph,a“type”ofthegraph(dominantdirectionorabsenceofit:knot,L-shape,horizontal,vertical,Northwest,etc),relationsbetweengraphsofdifferentn-Ddataplottedonthesameplane.Tomakethisanalysisfasteragentscollaboratebydividinganalysisofthesefeaturesbetweenthemandbyexchangingresultsofanalysis:Findingrelationsbetweengraphsincludes:identifyingpropertiessuchas:parallel,rotated,affinetransformedrelativetoeachother,percentageofoverlap,thesize,andshapeoftheareaoftheoverlapofenvelopes,thedistance.xt=(xt1,xt2,…,xt8)isgivenbytheformula:(xt3=xt1)&(xt4=xt2+2)&(xt5=xt1+2)&(xt6=xt4)&(xt7=xt5)&(xt8=xt2).xt=(xt1,xt2,…,xt8)andxt+1=(xt+1,1,xt+1,2,…,xt+1,8)isgivenbytheformulas:xt+1,i=3xti,i=1,3,5,7andxt+1,i=xt,i,i=2,4,6,8.Hereoddattributesgrowlinearlyandevenattributesareconstants.TubesThebottomfiguresshowthatallobjectshavethesamestructureinCPCthatislessevidentinparallelcoordinatesintheupperfigures.Thesearethesameshapesjustshifted.Intheparallelcoordinatestheshapesarenotidentical,butsimilar.Itiseasiertoseeidenticalshapesthansimilarshapes.AgentsandLosslessVisualizationFigures(a)and(c)showtubes(cylinders)in3-Dwithpointsincolors.Thematchedgraphs(lines)ofCPCrepresentationsareshowninthesamecolorsin(b)forthethreelefttubesandin(d)fromtheforth(left)tube.In2-Dvisualizationallobjectswithineachpipehavepracticallythesamedirections,similarlengthsandlocatedclosely.Thesesimilaritieshelpacollaboratingagenttodistinguishthemfromdatafromotherpipes.Thisiscriticalforthesuccessofcollaborativen-Ddatavisualanalysis.Such2-DlosslessCPCrepresentationallowsdistinguishingclassesvisually.Eachagentworksontheindividualclassandcanextractvisualfeaturesofeachclassandthenagentscombinetheirfeaturesasajointdescriptionofcharacteristicsthatdiscriminateclasses.ThisspeedsupthetotalvisualdiscoverycollaborativelyVisualseparationvs.AnalyticalseparationofclassesOurstudieshadshownthateverywherewhereotherlosslessvisualizations(parallelandradialcoordinates)areuseful,CPCalsouseful.Woulditbedifficulttoseparatenon-overlappinghyper-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 脑裂伤的护理措施
- body-language知识教学课件
- 2024年护理安全课件
- 新发展英语(第二版)综合教程2 课件 Unit 8 Food
- 2019培训课件教学课件
- 人教版数学六年级下册6.2图形与几何练习卷含答案
- 无锡市南长区重点达标名校2025年全国新初三下学期开学大联考试题英语试题含答案
- 云南水利水电职业学院《电视新闻节目制作》2023-2024学年第二学期期末试卷
- 2017安全生产课件
- 浙江省富阳市重点中学2025年初三中考冲刺预测卷(六)英语试题含答案
- 家禽委托屠宰合同协议书
- 2024年全国职业院校技能大赛高职组(法律实务赛项)考试题库(含答案)
- 酒店式公寓开发财务分析实例
- JJF 2122-2024机动车测速仪现场测速标准装置校准规范
- 企业所得税汇算清缴申报表电子表格版(带公式-自动计算)
- 高压电工证考试题库及答案(完整版)
- 施工项目环境保护管理组织机构
- 辽宁省沈阳市郊联体重点高中2023-2024学年高二下学期4月月考化学试题
- 高中学籍档案课程学分填写样式-历史化学政治
- 南京市旭东中学2023-2024学年中考语文全真模拟试卷含解析
- 工业机器人基础及应用高职全套教学课件
评论
0/150
提交评论