山东省淄博市齐鲁武校高二数学文月考试卷含解析_第1页
山东省淄博市齐鲁武校高二数学文月考试卷含解析_第2页
山东省淄博市齐鲁武校高二数学文月考试卷含解析_第3页
山东省淄博市齐鲁武校高二数学文月考试卷含解析_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省淄博市齐鲁武校高二数学文月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.函数在区间上的最小值为(

)A.

B.

C.

D.参考答案:D略2.设Sn为数列{an}的前n项和,,,则数列的前20项和为(

)A. B.C. D.参考答案:D,相减得由得出,==故选D点睛:已知数列的与的等量关系,往往是再写一项,作差处理得出递推关系,一定要注意n的范围,有的时候要检验n=1的时候,本题就是检验n=1,不符合,通项是分段的.3.“直线ax+y+1=0与(a+2)x﹣3y﹣2=0垂直”是“a=1”的()A.既不充分也不必要条件 B.充分不必要条件C.充要条件 D.必要不充分条件参考答案:D【考点】必要条件、充分条件与充要条件的判断.【分析】由两条直线相互垂直,可得:﹣a×(﹣)=﹣1,解得a,即可判断出结论.【解答】解:由两条直线相互垂直,可得:﹣a×(﹣)=﹣1,解得a=﹣3或1.∴“直线ax+y+1=0与(a+2)x﹣3y﹣2=0垂直”是“a=1”的必要不充分条件.故选:D.【点评】本题考查了直线相互垂直的充要条件及其判定方法,考查了推理能力与计算能力,属于基础题.4.若“对任意的实数,不等式均成立”是假命题,则实数的取值范围(

参考答案:D5.直线经过一定点,则该点的坐标是(

)A.

B.

C.

D.参考答案:A略6.下列各点中,不在x+y﹣1≤0表示的平面区域内的点是()A.(0,0) B.(﹣1,1) C.(﹣1,3) D.(2,﹣3)参考答案:C【考点】二元一次不等式(组)与平面区域.【分析】分别把A,B,C,D四个点的坐标代入不等式x+y﹣1≤06进行判断,能够求出结果.【解答】解:把(0,0)代入不等式x+y﹣1≤0,得0﹣1≤0,成立,∴点A在不等式x+y﹣1≤0表示的平面区域内;把(﹣1,1)代入不等式x+y﹣1≤0,得﹣1+1﹣1≤0,成立,∴点B在不等式x+y﹣1≤0表示的平面区域内;把(﹣1,3)代入不等式x+y﹣1≤0,得﹣1+3﹣1≤0,不成立,∴点C不在不等式x+y﹣1≤0表示的平面区域内;把(2,﹣3)代入不等式x+y﹣1≤0,得2﹣3﹣1≤0,成立,∴点D在不等式x+y﹣1≤0表示的平面区域内.故选C.7.用数学归纳法证明1+++…+<n(n∈N*,n>1)时,在证明过程的第二步从n=k到n=k+1时,左边增加的项数是

()A.2k

B.2k-1

C.

D.2k+1参考答案:A略8. “”是“函数在区间上单调递增”的(

) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件参考答案:B略9.函数R)是(A)周期为的奇函数

(B)周期为的偶函数(C)周期为的奇函数

(D)周期为的偶函数参考答案:B10.定义在(0,+∞)上的可导函数f(x)满足f′(x)·x<f(x),且f(2)=0,则的解集为()A.(0,2)

B.(0,2)∪(2,+∞)

C.(2,+∞)

D.?参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.某公共汽车站每隔10分钟有一辆公共汽车发往A地,李磊不定时的到车站等车去A地,则他最多等3分钟的概率为

参考答案:略12.如图,在圆O中,直径AB与弦CD垂直,垂足为E,,垂足为F,若,,则

。参考答案:513.点A是圆上任意一点,点A关于直线的对称点也在圆上,则实数=__________;

参考答案:-10略14.已知抛物线与直线,“”是“直线与抛物线有两个不同交点”的

条件参考答案:必要不充分15.在数列{an}中,a1=3,an+1=an+,则通项公式an=.参考答案:4﹣【考点】数列的求和.【分析】由已知可得,an+1﹣an==,然后利用叠加法即可求解【解答】解:∵an+1﹣an==∴…an﹣an﹣1=以上n﹣1个式子相加可得,an﹣a1=∵a1=3,∴故答案为:4﹣16.已知的平均数为a,方差为b,则的平均数是_____,标准差是

___

参考答案:3a+2,略17.△ABC的三边长分别为,则的值为▲

.参考答案:-19由于,则,则=||·||·故答案为.

三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.是否存在锐角和,使得(1);(2)同时成立,若存在,求出、的值,若不存在,说明理由.参考答案:解析:由得∴,∴,是一元二次方程的两根解得当tanβ=1时,,得当时,不符合题意,舍去.所以.19.已知直线与、轴交于、两点.(Ⅰ)若点、分别是双曲线的虚轴、实轴的一个端点,试在平面上找两点、,使得双曲线上任意一点到、这两点距离差的绝对值是定值.(Ⅱ)若以原点为圆心的圆截直线所得弦长是,求圆的方程以及这条弦的中点.参考答案:见解析(Ⅰ)∵直线与轴,轴交于,两点,∴,,又、分别是双曲线的虚轴,实轴的一个端点,∴双曲线中,,,由题可知,是双曲线的焦点,∴,或,.(Ⅱ)圆心到直线的距离,∴,∴圆的方程为,设的中点为则:,解,即弦的中点为.20.已知函数(I)若a=-2,求证:函数在(1,+∞)上是增函数;(II)当a≥-2时,求函数在[1,e]上的最小值及相应的x值;(Ⅲ)若存在[l,e],使得≤(a+2)x成立,求实数a的取值范围.参考答案:(Ⅰ)当时,,当,,故函数在上是增函数--------------------------------------------------------2分(Ⅱ),当,,当时,在上非负(仅当,x=1时,),故函数在上是增函数,此时.∴当时,的最小值为1,相应的x值为1.----------------------------------5分(Ⅲ)不等式,可化为.∵,∴且等号不能同时取,所以,即,因而(),令(),又,当时,,,从而(仅当x=1时取等号),所以在上为增函数,故的最小值为,所以a的取值范围是.--------------------------10分

略21.已知函数f(x)=cosxcos(x+).(1)求f(x)在区间[0,]上的值域;(2)若f(θ)=,﹣<θ<,求cos2θ的值.参考答案:(1)化函数f(x)为余弦型函数,根据x∈[0,]时求出f(x)的值域即可;(2)由f(θ)求出cos(2θ+)的值,利用cos2θ=cos[(2θ+)﹣]求出三角函数值即可.解:(1)函数f(x)=cosxcos(x+)=cosx(cosxcos﹣sinxsin)=cos2x﹣sinxcosx=(1+cos2x)﹣sin2x=(cos2x﹣sin2x)+=cos(2x+)+;当x∈[0,]时,2x∈[0,π],2x+∈[,],∴cos(2x+)∈[﹣1,],∴cos(2x+)+∈[﹣,],

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论