




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年高考数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,则下列关系正确的是()A. B. C. D.2.已知关于的方程在区间上有两个根,,且,则实数的取值范围是()A. B. C. D.3.已知复数z,则复数z的虚部为()A. B. C.i D.i4.已知函数,,若总有恒成立.记的最小值为,则的最大值为()A.1 B. C. D.5.抛物线的焦点为,则经过点与点且与抛物线的准线相切的圆的个数有()A.1个 B.2个 C.0个 D.无数个6.已知随机变量X的分布列如下表:X01Pabc其中a,b,.若X的方差对所有都成立,则()A. B. C. D.7.执行程序框图,则输出的数值为()A. B. C. D.8.若函数的图象上两点,关于直线的对称点在的图象上,则的取值范围是()A. B. C. D.9.△ABC的内角A,B,C的对边分别为,已知,则为()A. B. C.或 D.或10.执行如图所示的程序框图,若输出的值为8,则框图中①处可以填().A. B. C. D.11.已知向量满足,且与的夹角为,则()A. B. C. D.12.已知函数,若,则等于()A.-3 B.-1 C.3 D.0二、填空题:本题共4小题,每小题5分,共20分。13.已知变量(m>0),且,若恒成立,则m的最大值________.14.设,则______.15.《九章算术》卷5《商功》记载一个问题“今有圆堡瑽,周四丈八尺,高一丈一尺.问积几何?答曰:二千一百一十二尺,术曰:周自相乘,以高乘之,十二而一”,这里所说的圆堡瑽就是圆柱体,它的体积为“周自相乘,以高乘之,十二而一”,就是说:圆堡瑽(圆柱体)的体积为(底面圆的周长的平方高),则由此可推得圆周率的取值为________.16.展开式中的系数为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)求函数在处的切线方程(2)设函数,对于任意,恒成立,求的取值范围.18.(12分)已知为等差数列,为等比数列,的前n项和为,满足,,,.(1)求数列和的通项公式;(2)令,数列的前n项和,求.19.(12分)某公园有一块边长为3百米的正三角形空地,拟将它分割成面积相等的三个区域,用来种植三种花卉.方案是:先建造一条直道将分成面积之比为的两部分(点D,E分别在边,上);再取的中点M,建造直道(如图).设,,(单位:百米).(1)分别求,关于x的函数关系式;(2)试确定点D的位置,使两条直道的长度之和最小,并求出最小值.20.(12分)年,山东省高考将全面实行“选”的模式(即:语文、数学、外语为必考科目,剩下的物理、化学、历史、地理、生物、政治六科任选三科进行考试).为了了解学生对物理学科的喜好程度,某高中从高一年级学生中随机抽取人做调查.统计显示,男生喜欢物理的有人,不喜欢物理的有人;女生喜欢物理的有人,不喜欢物理的有人.(1)据此资料判断是否有的把握认为“喜欢物理与性别有关”;(2)为了了解学生对选科的认识,年级决定召开学生座谈会.现从名男同学和名女同学(其中男女喜欢物理)中,选取名男同学和名女同学参加座谈会,记参加座谈会的人中喜欢物理的人数为,求的分布列及期望.,其中.21.(12分)在三棱锥中,是边长为的正三角形,平面平面,,M、N分别为、的中点.(1)证明:;(2)求三棱锥的体积.22.(10分)为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,整理如下:甲公司员工:410,390,330,360,320,400,330,340,370,350乙公司员工:360,420,370,360,420,340,440,370,360,420每名快递员完成一件货物投递可获得的劳务费情况如下:甲公司规定每件0.65元,乙公司规定每天350件以内(含350件)的部分每件0.6元,超出350件的部分每件0.9元.(1)根据题中数据写出甲公司员工在这10天投递的快件个数的平均数和众数;(2)为了解乙公司员工每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为(单位:元),求的分布列和数学期望;(3)根据题中数据估算两公司被抽取员工在该月所得的劳务费.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
首先判断和1的大小关系,再由换底公式和对数函数的单调性判断的大小即可.【详解】因为,,,所以,综上可得.故选:A【点睛】本题考查了换底公式和对数函数的单调性,考查了推理能力与计算能力,属于基础题.2、C【解析】
先利用三角恒等变换将题中的方程化简,构造新的函数,将方程的解的问题转化为函数图象的交点问题,画出函数图象,再结合,解得的取值范围.【详解】由题化简得,,作出的图象,又由易知.故选:C.【点睛】本题考查了三角恒等变换,方程的根的问题,利用数形结合法,求得范围.属于中档题.3、B【解析】
利用复数的运算法则、虚部的定义即可得出【详解】,则复数z的虚部为.故选:B.【点睛】本题考查了复数的运算法则、虚部的定义,考查了推理能力与计算能力,属于基础题.4、C【解析】
根据总有恒成立可构造函数,求导后分情况讨论的最大值可得最大值最大值,即.根据题意化简可得,求得,再换元求导分析最大值即可.【详解】由题,总有即恒成立.设,则的最大值小于等于0.又,若则,在上单调递增,无最大值.若,则当时,,在上单调递减,当时,,在上单调递增.故在处取得最大值.故,化简得.故,令,可令,故,当时,,在递减;当时,,在递增.故在处取得极大值,为.故的最大值为.故选:C【点睛】本题主要考查了根据导数求解函数的最值问题,需要根据题意分析导数中参数的范围,再分析函数的最值,进而求导构造函数求解的最大值.属于难题.5、B【解析】
圆心在的中垂线上,经过点,且与相切的圆的圆心到准线的距离与到焦点的距离相等,圆心在抛物线上,直线与抛物线交于2个点,得到2个圆.【详解】因为点在抛物线上,又焦点,,由抛物线的定义知,过点、且与相切的圆的圆心即为线段的垂直平分线与抛物线的交点,这样的交点共有2个,故过点、且与相切的圆的不同情况种数是2种.故选:.【点睛】本题主要考查抛物线的简单性质,本题解题的关键是求出圆心的位置,看出圆心必须在抛物线上,且在垂直平分线上.6、D【解析】
根据X的分布列列式求出期望,方差,再利用将方差变形为,从而可以利用二次函数的性质求出其最大值为,进而得出结论.【详解】由X的分布列可得X的期望为,又,所以X的方差,因为,所以当且仅当时,取最大值,又对所有成立,所以,解得,故选:D.【点睛】本题综合考查了随机变量的期望、方差的求法,结合了概率、二次函数等相关知识,需要学生具备一定的计算能力,属于中档题.7、C【解析】
由题知:该程序框图是利用循环结构计算并输出变量的值,计算程序框图的运行结果即可得到答案.【详解】,,,,,满足条件,,,,,满足条件,,,,,满足条件,,,,,满足条件,,,,,不满足条件,输出.故选:C【点睛】本题主要考查程序框图中的循环结构,属于简单题.8、D【解析】
由题可知,可转化为曲线与有两个公共点,可转化为方程有两解,构造函数,利用导数研究函数单调性,分析即得解【详解】函数的图象上两点,关于直线的对称点在上,即曲线与有两个公共点,即方程有两解,即有两解,令,则,则当时,;当时,,故时取得极大值,也即为最大值,当时,;当时,,所以满足条件.故选:D【点睛】本题考查了利用导数研究函数的零点,考查了学生综合分析,转化划归,数形结合,数学运算的能力,属于较难题.9、D【解析】
由正弦定理可求得,再由角A的范围可求得角A.【详解】由正弦定理可知,所以,解得,又,且,所以或。故选:D.【点睛】本题主要考查正弦定理,注意角的范围,是否有两解的情况,属于基础题.10、C【解析】
根据程序框图写出几次循环的结果,直到输出结果是8时.【详解】第一次循环:第二次循环:第三次循环:第四次循环:第五次循环:第六次循环:第七次循环:第八次循环:所以框图中①处填时,满足输出的值为8.故选:C【点睛】此题考查算法程序框图,根据循环条件依次写出每次循环结果即可解决,属于简单题目.11、A【解析】
根据向量的运算法则展开后利用数量积的性质即可.【详解】.故选:A.【点睛】本题主要考查数量积的运算,属于基础题.12、D【解析】分析:因为题设中给出了的值,要求的值,故应考虑两者之间满足的关系.详解:由题设有,故有,所以,从而,故选D.点睛:本题考查函数的表示方法,解题时注意根据问题的条件和求解的结论之间的关系去寻找函数的解析式要满足的关系.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
在不等式两边同时取对数,然后构造函数f(x)=,求函数的导数,研究函数的单调性即可得到结论.【详解】不等式两边同时取对数得,即x2lnx1<x1lnx2,又即成立,设f(x)=,x∈(0,m),∵x1<x2,f(x1)<f(x2),则函数f(x)在(0,m)上为增函数,函数的导数,由f′(x)>0得1﹣lnx>0得lnx<1,得0<x<e,即函数f(x)的最大增区间为(0,e),则m的最大值为e故答案为:e【点睛】本题考查函数单调性与导数之间的应用,根据条件利用取对数得到不等式,从而可构造新函数,是解决本题的关键14、121【解析】
在所给的等式中令,,令,可得2个等式,再根据所得的2个等式即可解得所求.【详解】令,得,令,得,两式相加,得,所以.故答案为:.【点睛】本题主要考查二项式定理的应用,考查学生分析问题的能力,属于基础题,难度较易.15、3【解析】
根据圆堡瑽(圆柱体)的体积为(底面圆的周长的平方高),可得,进而可求出的值【详解】解:设圆柱底面圆的半径为,圆柱的高为,由题意知,解得.故答案为:3.【点睛】本题主要考查了圆柱的体积公式.只要能看懂题目意思,结合方程的思想即可求出结果.16、30【解析】
先将问题转化为二项式的系数问题,利用二项展开式的通项公式求出展开式的第项,令的指数分别等于2,4,求出特定项的系数.【详解】由题可得:展开式中的系数等于二项式展开式中的指数为2和4时的系数之和,由于二项式的通项公式为,令,得展开式的的系数为,令,得展开式的的系数为,所以展开式中的系数,故答案为30.【点睛】本题考查利用二项式展开式的通项公式解决二项展开式的特定项的问题,考查学生的转化能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)求出,即可求出切线的点斜式方程,整理即可;(2)的取值范围满足,,求出,当时求出,的解,得到单调区间,极小值最小值即可.【详解】(1)由于,此时切点坐标为所以切线方程为.(2)由已知,故.由于,故,设由于在单调递增同时时,,时,,故存在使得且当时,当时,所以当时,当时,所以当时,取得极小值,也是最小值,故由于,所以,.【点睛】本题考查导数的几何意义、不等式恒成立问题,应用导数求最值是解题的关键,考查逻辑推理、数学计算能力,属于中档题.18、(1),;(2).【解析】
(1)设的公差为,的公比为,由基本量法列式求出后可得通项公式;(2)奇数项分一组用裂项相消法求和,偶数项分一组用等比数列求和公式求和.【详解】(1)设的公差为,的公比为,由,.得:,解得,∴,;(2)由,得,为奇数时,,为偶数时,,∴.【点睛】本题考查求等差数列和等比数列的通项公式,考查分组求和法及裂项相消法、等差数列与等比数列的前项和公式,求通项公式采取的是基本量法,即求出公差、公比,由通项公式前项和公式得出相应结论.数列求和问题,对不是等差数列或等比数列的数列求和,需掌握一些特殊方法:错位相减法,裂项相消法,分组(并项)求和法,倒序相加法等等.19、(1),.,.(2)当百米时,两条直道的长度之和取得最小值百米.【解析】
(1)由,可解得.方法一:再在中,利用余弦定理,可得关于x的函数关系式;在和中,利用余弦定理,可得关于x的函数关系式.方法二:在中,可得,则有,化简整理即得;同理,化简整理即得.(2)由(1)和基本不等式,计算即得.【详解】解:(1),是边长为3的等边三角形,又,,.由,得.法1:在中,由余弦定理,得.故直道长度关于x的函数关系式为,.在和中,由余弦定理,得①②因为M为的中点,所以.由①②,得,所以,所以.所以,直道长度关于x的函数关系式为,.法2:因为在中,,所以.所以,直道长度关于x的函数关系式为,.在中,因为M为的中点,所以.所以.所以,直道长度关于x的函数关系式为,.(2)由(1)得,两条直道的长度之和为(当且仅当即时取“”).故当百米时,两条直道的长度之和取得最小值百米.【点睛】本题考查了余弦定理和基本不等式,第一问也可以利用三角形中的向量关系进行求解,属于中档题.20、(1)有的把握认为喜欢物理与性别有关;(2)分布列见解析,.【解析】
(1)根据题目所给信息,列出列联表,计算的观测值,对照临界值表可得出结论;(2)设参加座谈会的人中喜欢物理的男同学有人,女同学有人,则,确定的所有取值为、、、、.根据计数原理计算出每个所对应的概率,列出分布列计算期望即可.【详解】(1)根据所给条件得列联表如下:男女合计喜欢物理不喜欢物理合计,所以有的把握认为喜欢物理与性别有关;(2)设参加座谈会的人中喜欢物理的男同学有人,女同学有人,则,由题意可知,的所有可能取值为、、、、.,,,,.所以的分布列为:所以.【点睛】本题考查了独立性检验、离散型随机变量的概率分布列.离散型随机变量的期望.属于中等题.21、(1)证明见解析;(2).【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 股权转让协议(海景酒店)
- 2025广东职工劳务合同
- 商品房认购合同
- 2025年门面租赁合同模板
- 护士辞职申请协议书
- 个人提成协议书范本
- 大庆医学高等专科学校《专业导学(物流管理)》2023-2024学年第一学期期末试卷
- 河南省郑州市登封市重点中学2025年初三第二次(4月)调研考试化学试题试卷含解析
- 河南林业职业学院《结构力学2》2023-2024学年第二学期期末试卷
- 四川文理学院《生物制药工程原理和技术》2023-2024学年第二学期期末试卷
- 妇女营养保健培训
- 时间序列的平稳性测试题及答案
- 2025-2030中国数据要素市场发展前景及趋势预测分析研究报告
- 中外航海文化知到课后答案智慧树章节测试答案2025年春中国人民解放军海军大连舰艇学院
- 2025年华润燃气投资中国有限公司招聘笔试参考题库含答案解析
- 2022年《跟徐老师学汉语》新HSK六级词汇词
- 妊娠剧吐诊断以及临床处理专家共识
- [PPT]桥梁工程桩基施工超全解析(41页 配图丰富)_ppt
- 叉车定期检验研究分析报告
- 光缆和管道的施工规范标准
- MDK5软件入门
评论
0/150
提交评论