2022年江苏省盐城市中考数学试卷_第1页
2022年江苏省盐城市中考数学试卷_第2页
2022年江苏省盐城市中考数学试卷_第3页
2022年江苏省盐城市中考数学试卷_第4页
2022年江苏省盐城市中考数学试卷_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第14页(共14页)2022年江苏省盐城市中考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)2022的倒数是(B)A.﹣2022 B. C.2022 D.﹣2.(3分)下列计算,正确的是(D)A.a+a2=a3 B.a2•a3=a6 C.a6÷a3=a2 D.(a2)3=a63.(3分)下列四幅照片中,主体建筑的构图不对称的(B)A. B. C. D.4.(3分)盐城市图书馆现有馆藏纸质图书1600000余册.数据1600000用科学记数法表示为(C)A.0.16×107 B.1.6×107 C.1.6×106 D.16×1055.(3分)一组数据﹣2,0,3,1,﹣1的极差是(D)A.2 B.3 C.4 D.56.(3分)正方体的每个面上都有一个汉字,如图是它的一种平面展开图,那么在原正方体中,与“盐”字所在面相对的面上的汉字是(D)A.强 B.富 C.美 D.高7.(3分)小明将一块直角三角板摆放在直尺上,如图所示,则∠ABC与∠DEF的关系是(A)A.互余 B.互补 C.同位角 D.同旁内角8.(3分)“跳眼法”是指用手指和眼睛估测距离的方法,步骤:第一步:水平举起右臂,大拇指紧直向上,大臂与身体垂直;第二步:闭上左眼,调整位置,使得右眼、大拇指、被测物体在一条直线上;第三步:闭上右眼,睁开左眼,此时看到被测物体出现在大拇指左侧,与大拇指指向的位置有一段横向距离,参照被测物体的大小,估算横向距离的长度;第四步:将横向距离乘以10(人的手臂长度与眼距的比值一般为10),得到的值约为被测物体离观测点的距离值.如图是用“跳眼法”估测前方一辆汽车到观测点距离的示意图,该汽车的长度大约为4米,则汽车到观测点的距离约为()A.40米 B.60米 C.80米 D.100米【解析】观察图形,横向距离大约是汽车的长度的2倍,∵汽车的长度大约为4米,∴横向距离大约是8米,由“跳眼法”的步骤可知,将横向距离乘以10,得到的值约为被测物体离观测点的距离值,∴汽车到观测点的距离约为80米,故选:C.二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题卡的相应位置上)9.(3分)若有意义,则x的取值范围是x≥1.10.(3分)已知反比例函数的图象经过点(2,3),则该函数表达式为y=.11.(3分)分式方程=1的解为x=2.12.(3分)如图,电路图上有A、B、C3个开关和1个小灯泡,闭合开关C或同时闭合开关A、B都可以使小灯泡发亮.任意闭合其中的1个开关,小灯泡发亮的概率是.13.(3分)如图,AB、AC是⊙O的弦,过点A的切线交CB的延长线于点D,若∠BAD=35°,则∠C=35°.【解析】连接OA并延长交⊙O于点E,连接BE,∵AD与⊙O相切于点A,∴∠OAD=90°,∵∠BAD=35°,∴∠BAE=∠OAD﹣∠BAD=55°,∵AE是⊙O的直径,∴∠ABE=90°,∴∠E=90°﹣∠BAE=35°,∴∠C=∠E=35°,故答案为:35.14.(3分)如图,在矩形ABCD中,AB=2BC=2,将线段AB绕点A按逆时针方向旋转,使得点B落在边CD上的点B'处,线段AB扫过的面积为.【解析】∵AB=2BC=2,∴BC=1,∵四边形ABCD是矩形,∴AD=BC=1,∠D=∠DAB=90°,∵将线段AB绕点A按逆时针方向旋转,∴AB'=AB=2,∵cos∠DAB'==,∴∠DAB'=60°,∴∠BAB'=30°,∴线段AB扫过的面积==,故答案为:.15.(3分)若点P(m,n)在二次函数y=x2+2x+2的图象上,且点P到y轴的距离小于2,则n的取值范围是1≤n<10.【解析】∵y=x2+2x+2=(x+1)2+1,∴二次函数y=x2+2x+2的图象开口象上,顶点为(﹣1,1),对称轴是直线x=﹣1,∵P(m,n)到y轴的距离小于2,∴﹣2<m<2,而﹣1﹣(﹣2)<2﹣(﹣1),当m=2,n=(2+1)2+1=10,当m=﹣1时,n=1,∴n的取值范围是1≤n<10,故答案为:1≤n<10.16.(3分)《庄子•天下篇》记载“一尺之棰,日取其半,万世不竭”.如图,直线l1:y=x+1与y轴交于点A,过点A作x轴的平行线交直线l2:y=x于点O1,过点O1作y轴的平行线交直线l1于点A1,以此类推,令OA=a1,O1A1=a2,…,On﹣1An﹣1=an,若a1+a2+…+an≤S对任意大于1的整数n恒成立,则S的最小值为2.【解析】把x=0代入y=x+1得,y=1,∴A(0,1),∴OA=a1=1,把y=1代入y=x得,x=1,∴O1(1,1),把x=1代入y=x+1得,y=×1+1=,∴A1(1,),∴O1A1=a2=﹣1=,把y=代入y=x得,y=,∴O2(,),把x=代入y=x+1得,y=×+1=,∴A2(,),∴O2A2=a3=﹣=,…,∴On﹣1An﹣1=an=()n﹣1,∵a1+a2+…+an≤S对任意大于1的整数n恒成立,∴S的最小,∵S≥a1+a2=1+++…+=2﹣,∴S的最小值为2,故答案为:2.三、解答题(本大题共有11小题,共102分.请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)17.(6分)|﹣3|+tan45°﹣(﹣1)0.【解析】原式=3+1﹣1=3.18.(6分)解不等式组:.【解析】,解不等式①,得x≥1,解不等式②,得x<2,故原不等式组的解集为:1≤x<2.19.(8分)先化简,再求值:(x+4)(x﹣4)+(x﹣3)2,其中x2﹣3x+1=0.【解析】原式=x2﹣16+x2﹣6x+9=2x2﹣6x﹣7,∵x2﹣3x+1=0,∴x2﹣3x=﹣1,∴2x2﹣6x=﹣2,∴原式=﹣2﹣7=﹣9.20.(8分)某社区举行新冠疫情防控核酸检测大演练,卫生防疫部门在该社区设置了三个核酸检测点A、B、C,甲、乙两人任意选择一个检测点参加检测.求甲、乙两人不在同一检测点参加检测的概率.(用画树状图或列表的方法求解)【解析】画树状图如下:共有9种等可能的结果,其中甲、乙两人不在同一检测点参加检测的结果有6种,∴甲、乙两人不在同一检测点参加检测的概率为=.21.(8分)小丽从甲地匀速步行去乙地,小华骑自行车从乙地匀速前往甲地,同时出发.两人离甲地的距离y(m)与出发时间x(min)之间的函数关系如图所示.(1)小丽步行的速度为80m/min;(2)当两人相遇时,求他们到甲地的距离.【解析】(1)由图象可知,小丽步行的速度为=80(m/min),故答案为:80;(2)由图象可得,小华骑自行车的速度是=120(m/min),∴出发后需要=12(min)两人相遇,∴相遇时小丽所走的路程为12×80=960(m),即当两人相遇时,他们到甲地的距离是960m.22.(10分)证明:垂直于弦AB的直径CD平分弦以及弦所对的两条弧.【解答】如图,CD为⊙O的直径,AB是⊙O的弦,AB⊥CD,垂足为M.求证:AM=BM,,.证明:连接OA、OB,∵OA=OB,∴△OAB是等腰三角形,∵AB⊥CD,∴AM=BM,∠AOC=∠BOC,∴,.23.(10分)如图,在△ABC与△A′B′C′中,点D、D′分别在边BC、B′C′上,且△ACD∽△A′C′D′,若③(答案不唯一),则△ABD∽△A′B′D′.请从①=;②=;③∠BAD=∠B′A′D′这3个选项中选择一个作为条件(写序号),并加以证明.【解析】③.理由如下:∵△ACD∽△A′C′D′,∴∠ADC=∠A'D'C',∴∠ADB=∠A'D'B',∵∠BAD=∠B'A'D',∠ADC=∠B+∠BAD,∠A'D'C'=∠B'+∠B'A'D',∴∠B=∠B',∴△ABD∽△A'B'D'.同理,选①也可以.故答案是:③(答案不唯一).24.(10分)合理的膳食可以保证青少年体格和智力的正常发育.综合实践小组为了解某校学生膳食营养状况,从该校1380名学生中调查了100名学生的膳食情况,调查数据整理如下:(1)本次调查采用抽样调查的调查方法;(填“普查”或“抽样调查”)(2)通过对调查数据的计算,样本中的蛋白质平均供能比约为14.6%,请计算样本中的脂肪平均供能比和碳水化合物平均供能比;(3)结合以上的调查和计算,对照下表中的参考值,请你针对该校学生膳食状况存在的问题提一条建议.中国营养学会推荐的三大营养素供能比参考值蛋白质10%﹣15%脂肪20%﹣30%碳水化合物50%﹣65%【解析】(1)本次调查采用抽样调查的调查方法.故答案为:抽样调查;(2)∵(15.4%×35+15.5%×25+13.3%×40)÷(35+25+40)≈14.6,样本中的脂肪平均供能比=(36.6%×35+40.4%×25+39.2%×40)÷(35+25+40)≈38.6%.碳水化合物平均供能比=(48.0%×35+44.1%×25+47.5%×40)÷(35+25+40)≈46.8%;(3)建议:减少脂肪类食物,增加碳水化合物食物.25.(10分)2022年6月5日,“神舟十四号”载人航天飞船搭载“明星”机械臂成功发射.如图是处于工作状态的某型号手臂机器人示意图,OA是垂直于工作台的移动基座,AB、BC为机械臂,OA=1m,AB=5m,BC=2m,∠ABC=143°.机械臂端点C到工作台的距离CD=6m.(1)求A、C两点之间的距离;(2)求OD长.(结果精确到0.1m,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈2.24)长.【解答】解:(1)如图,过点A作AE⊥CB,垂足为E,在Rt△ABE中,AB=5,∠ABE=37°,∵sin∠ABE=,cos∠ABE=,∴=0.60,=0.80,∴AE=3,BE=4,∴CE=6,在Rt△ACE中,由勾股定理AC==3≈6.7m.(2)过点A作AF⊥CD,垂足为F,∴FD=AO=1,∴CF=5,在Rt△ACF中,由勾股定理AF==2.∴OD=2≈4.5m.26.(12分)【经典回顾】梅文鼎是我国清初著名的数学家,他在《勾股举隅》中给出多种证明勾股定理的方法.图1是其中一种方法的示意图及部分辅助线.在△ABC中,∠ACB=90°,四边形ADEB、ACHI和BFGC分别是以Rt△ABC的三边为一边的正方形.延长IH和FG,交于点L,连接LC并延长交DE于点J,交AB于点K,延长DA交IL于点M.(1)证明:AD=LC;(2)证明:正方形ACHI的面积等于四边形ACLM的面积;(3)请利用(2)中的结论证明勾股定理.【迁移拓展】(4)如图2,四边形ACHI和BFGC分别是以△ABC的两边为一边的平行四边形,探索在AB下方是否存在平行四边形ADEB,使得该平行四边形的面积等于平行四边形ACHI、BFGC的面积之和.若存在,作出满足条件的平行四边形ADEB(保留适当的作图痕迹);若不存在,请说明理由.【解答】(1)证明:如图1,连接MG,∵四边形ACHI,ABED和BCGF是正方形,∴AC=CH,BC=CG,∠ACH=∠BCG=90°,AB=AD,∵∠ACB=90°,∴∠GCH=360°﹣90°﹣90°﹣90°=90°,∴∠GCH=∠ACB,∴△ACB≌△HCG(SAS),∴GH=AB=AD,∵∠GCH=∠CHI=∠CGL=90°,∴四边形CGLH是矩形,∴CL=GH,∴AD=LC;(2)证明一:∵∠CAI=∠BAM=90°,∴∠BAC=∠MAI,∵AC=AI,∠ACB=∠I=90°,∴△ABC≌△AMI(ASA),由(1)知:△ACB≌△HCG,∴△AMI≌△HGC,∵四边形CGLH是矩形,∴S△CHG=S△CHL,∴S△AMI=S△CHL,∴正方形ACHI的面积等于四边形ACLM的面积;证明二:∵四边形CGLH是矩形,∴PH=PC,∴∠CHG=∠LCH,∴∠CAB=∠CHG=∠LCH,∵∠ACH=90°,∴∠ACK+∠LCH=90°,∴∠ACK+∠CAK=90°,∴∠AKC=90°,∴∠AKC=∠BAD=90°,∴DM∥LK,∵AC∥LI,∴四边形ACLM是平行四边形,∵正方形ACHI的面积=AC•CH,▱ACLH的面积=AC•CH,∴正方形ACHI的面积等于四边形ACLM的面积;(3)证明:由正方形ADEB可得AB∥DE,又AD∥LC,∴四边形ADJK是平行四边形,由(2)知,四边形ACLM是平行四边形,由(1)知:AD=LC,∴▱ADJK的面积=▱ACLM的面积=正方形ACHI,延长EB交LG于Q,同理有▱KJEB的面积=▱CBQL的面积=正方形BFGC,∴正方形ACHI的面积+正方形BFGC的面积=▱ADJK的面积+▱KJEB的面积=正方形ADEB,∴AC2+BC2=AB2;(4)解:如图2即为所求作的▱ADEB.27.(14分)【发现问题】小明在练习簿的横线上取点O为圆心,相邻横线的间距为半径画圆,然后半径依次增加一个间距画同心圆,描

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论