2022年新疆石河子高级中学高三冲刺模拟数学试卷含解析_第1页
2022年新疆石河子高级中学高三冲刺模拟数学试卷含解析_第2页
2022年新疆石河子高级中学高三冲刺模拟数学试卷含解析_第3页
2022年新疆石河子高级中学高三冲刺模拟数学试卷含解析_第4页
2022年新疆石河子高级中学高三冲刺模拟数学试卷含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022高考数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设,则A. B. C. D.2.对两个变量进行回归分析,给出如下一组样本数据:,,,,下列函数模型中拟合较好的是()A. B. C. D.3.在原点附近的部分图象大概是()A. B.C. D.4.设x、y、z是空间中不同的直线或平面,对下列四种情形:①x、y、z均为直线;②x、y是直线,z是平面;③z是直线,x、y是平面;④x、y、z均为平面.其中使“且”为真命题的是()A.③④ B.①③ C.②③ D.①②5.在空间直角坐标系中,四面体各顶点坐标分别为:.假设蚂蚁窝在点,一只蚂蚁从点出发,需要在,上分别任意选择一点留下信息,然后再返回点.那么完成这个工作所需要走的最短路径长度是()A. B. C. D.6.已知函数是上的减函数,当最小时,若函数恰有两个零点,则实数的取值范围是()A. B.C. D.7.函数的图象为C,以下结论中正确的是()①图象C关于直线对称;②图象C关于点对称;③由y=2sin2x的图象向右平移个单位长度可以得到图象C.A.① B.①② C.②③ D.①②③8.已知α,β表示两个不同的平面,l为α内的一条直线,则“α∥β是“l∥β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件9.如图是2017年第一季度五省GDP情况图,则下列陈述中不正确的是()A.2017年第一季度GDP增速由高到低排位第5的是浙江省.B.与去年同期相比,2017年第一季度的GDP总量实现了增长.C.2017年第一季度GDP总量和增速由高到低排位均居同一位的省只有1个D.去年同期河南省的GDP总量不超过4000亿元.10.已知双曲线,过原点作一条倾斜角为直线分别交双曲线左、右两支P,Q两点,以线段PQ为直径的圆过右焦点F,则双曲线离心率为A. B. C.2 D.11.在直角梯形中,,,,,点为上一点,且,当的值最大时,()A. B.2 C. D.12.甲、乙、丙、丁四位同学高考之后计划去三个不同社区进行帮扶活动,每人只能去一个社区,每个社区至少一人.其中甲必须去社区,乙不去社区,则不同的安排方法种数为()A.8 B.7 C.6 D.5二、填空题:本题共4小题,每小题5分,共20分。13.在的展开式中,项的系数是__________(用数字作答).14.已知满足且目标函数的最大值为7,最小值为1,则___________.15.设α、β为互不重合的平面,m,n是互不重合的直线,给出下列四个命题:①若m∥n,则m∥α;②若m⊂α,n⊂α,m∥β,n∥β,则α∥β;③若α∥β,m⊂α,n⊂β,则m∥n;④若α⊥β,α∩β=m,n⊂α,m⊥n,则n⊥β;其中正确命题的序号为_____.16.棱长为的正四面体与正三棱锥的底面重合,若由它们构成的多面体的顶点均在一球的球面上,则正三棱锥的内切球半径为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,.(1)当时,①求函数在点处的切线方程;②比较与的大小;(2)当时,若对时,,且有唯一零点,证明:.18.(12分)已知椭圆的离心率为,且以原点O为圆心,椭圆C的长半轴长为半径的圆与直线相切.(1)求椭圆的标准方程;(2)已知动直线l过右焦点F,且与椭圆C交于A、B两点,已知Q点坐标为,求的值.19.(12分)在世界读书日期间,某地区调查组对居民阅读情况进行了调查,获得了一个容量为200的样本,其中城镇居民140人,农村居民60人.在这些居民中,经常阅读的城镇居民有100人,农村居民有30人.(1)填写下面列联表,并判断能否有99%的把握认为经常阅读与居民居住地有关?城镇居民农村居民合计经常阅读10030不经常阅读合计200(2)调查组从该样本的城镇居民中按分层抽样抽取出7人,参加一次阅读交流活动,若活动主办方从这7位居民中随机选取2人作交流发言,求被选中的2位居民都是经常阅读居民的概率.附:,其中.0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.82820.(12分)移动支付(支付宝及微信支付)已经渐渐成为人们购物消费的一种支付方式,为调查市民使用移动支付的年龄结构,随机对100位市民做问卷调查得到列联表如下:(1)将上列联表补充完整,并请说明在犯错误的概率不超过0.01的前提下,认为支付方式与年龄是否有关?(2)在使用移动支付的人群中采用分层抽样的方式抽取10人做进一步的问卷调查,从这10人随机中选出3人颁发参与奖励,设年龄都低于35岁(含35岁)的人数为,求的分布列及期望.(参考公式:(其中)21.(12分)为了打好脱贫攻坚战,某贫困县农科院针对玉米种植情况进行调研,力争有效地改良玉米品种,为农民提供技术支援,现对已选出的一组玉米的茎高进行统计,获得茎叶图如图(单位:厘米),设茎高大于或等于180厘米的玉米为高茎玉米,否则为矮茎玉米.(1)求出易倒伏玉米茎高的中位数;(2)根据茎叶图的数据,完成下面的列联表:抗倒伏易倒伏矮茎高茎(3)根据(2)中的列联表,是否可以在犯错误的概率不超过1%的前提下,认为抗倒伏与玉米矮茎有关?附:,0.0500.0100.0013.8416.63510.82822.(10分)已知.(1)若曲线在点处的切线也与曲线相切,求实数的值;(2)试讨论函数零点的个数.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,然后求解复数的模.详解:,则,故选c.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.2.D【解析】

作出四个函数的图象及给出的四个点,观察这四个点在靠近哪个曲线.【详解】如图,作出A,B,C,D中四个函数图象,同时描出题中的四个点,它们在曲线的两侧,与其他三个曲线都离得很远,因此D是正确选项,故选:D.【点睛】本题考查回归分析,拟合曲线包含或靠近样本数据的点越多,说明拟合效果好.3.A【解析】

分析函数的奇偶性,以及该函数在区间上的函数值符号,结合排除法可得出正确选项.【详解】令,可得,即函数的定义域为,定义域关于原点对称,,则函数为奇函数,排除C、D选项;当时,,,则,排除B选项.故选:A.【点睛】本题考查利用函数解析式选择函数图象,一般要分析函数的定义域、奇偶性、单调性、零点以及函数值符号,考查分析问题和解决问题的能力,属于中等题.4.C【解析】

①举反例,如直线x、y、z位于正方体的三条共点棱时②用垂直于同一平面的两直线平行判断.③用垂直于同一直线的两平面平行判断.④举例,如x、y、z位于正方体的三个共点侧面时.【详解】①当直线x、y、z位于正方体的三条共点棱时,不正确;②因为垂直于同一平面的两直线平行,正确;③因为垂直于同一直线的两平面平行,正确;④如x、y、z位于正方体的三个共点侧面时,不正确.故选:C.【点睛】此题考查立体几何中线面关系,选择题一般可通过特殊值法进行排除,属于简单题目.5.C【解析】

将四面体沿着劈开,展开后最短路径就是的边,在中,利用余弦定理即可求解.【详解】将四面体沿着劈开,展开后如下图所示:最短路径就是的边.易求得,由,知,由余弦定理知其中,∴故选:C【点睛】本题考查了余弦定理解三角形,需熟记定理的内容,考查了学生的空间想象能力,属于中档题.6.A【解析】

首先根据为上的减函数,列出不等式组,求得,所以当最小时,,之后将函数零点个数转化为函数图象与直线交点的个数问题,画出图形,数形结合得到结果.【详解】由于为上的减函数,则有,可得,所以当最小时,,函数恰有两个零点等价于方程有两个实根,等价于函数与的图像有两个交点.画出函数的简图如下,而函数恒过定点,数形结合可得的取值范围为.故选:A.【点睛】该题考查的是有关函数的问题,涉及到的知识点有分段函数在定义域上单调减求参数的取值范围,根据函数零点个数求参数的取值范围,数形结合思想的应用,属于中档题目.7.B【解析】

根据三角函数的对称轴、对称中心和图象变换的知识,判断出正确的结论.【详解】因为,又,所以①正确.,所以②正确.将的图象向右平移个单位长度,得,所以③错误.所以①②正确,③错误.故选:B【点睛】本小题主要考查三角函数的对称轴、对称中心,考查三角函数图象变换,属于基础题.8.A【解析】试题分析:利用面面平行和线面平行的定义和性质,结合充分条件和必要条件的定义进行判断.解:根据题意,由于α,β表示两个不同的平面,l为α内的一条直线,由于“α∥β,则根据面面平行的性质定理可知,则必然α中任何一条直线平行于另一个平面,条件可以推出结论,反之不成立,∴“α∥β是“l∥β”的充分不必要条件.故选A.考点:必要条件、充分条件与充要条件的判断;平面与平面平行的判定.9.C【解析】

利用图表中的数据进行分析即可求解.【详解】对于A选项:2017年第一季度5省的GDP增速由高到低排位分别是:江苏、辽宁、山东、河南、浙江,故A正确;对于B选项:与去年同期相比,2017年第一季度5省的GDP均有不同的增长,所以其总量也实现了增长,故B正确;对于C选项:2017年第一季度GDP总量由高到低排位分别是:江苏、山东、浙江、河南、辽宁,2017年第一季度5省的GDP增速由高到低排位分别是:江苏、辽宁、山东、河南、浙江,均居同一位的省有2个,故C错误;对于D选项:去年同期河南省的GDP总量,故D正确.故选:C.【点睛】本题考查了图表分析,学生的分析能力,推理能力,属于基础题.10.B【解析】

求得直线的方程,联立直线的方程和双曲线的方程,求得两点坐标的关系,根据列方程,化简后求得离心率.【详解】设,依题意直线的方程为,代入双曲线方程并化简得,故,设焦点坐标为,由于以为直径的圆经过点,故,即,即,即,两边除以得,解得.故,故选B.【点睛】本小题主要考查直线和双曲线的交点,考查圆的直径有关的几何性质,考查运算求解能力,属于中档题.11.B【解析】

由题,可求出,所以,根据共线定理,设,利用向量三角形法则求出,结合题给,得出,进而得出,最后利用二次函数求出的最大值,即可求出.【详解】由题意,直角梯形中,,,,,可求得,所以·∵点在线段上,设,则,即,又因为所以,所以,当时,等号成立.所以.故选:B.【点睛】本题考查平面向量线性运算中的加法运算、向量共线定理,以及运用二次函数求最值,考查转化思想和解题能力.12.B【解析】根据题意满足条件的安排为:A(甲,乙)B(丙)C(丁);A(甲,乙)B(丁)C(丙);A(甲,丙)B(丁)C(乙);A(甲,丁)B(丙)C(乙);A(甲)B(丙,丁)C(乙);A(甲)B(丁)C(乙,丙);A(甲)B(丙)C(丁,乙);共7种,选B.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】的展开式的通项为:.令,得.答案为:-40.点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第r+1项,再由特定项的特点求出r值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第r+1项,由特定项得出r值,最后求出其参数.14.-2【解析】

先根据约束条件画出可行域,再利用几何意义求最值,表示直线在轴上的截距,只需求出可行域直线在轴上的截距最大最小值时所在的顶点即可.【详解】由题意得:目标函数在点B取得最大值为7,在点A处取得最小值为1,∴,,∴直线AB的方程是:,∴则,故答案为.【点睛】本题主要考查了简单的线性规划,以及利用几何意义求最值的方法,属于基础题.15.④【解析】

根据直线和平面,平面和平面的位置关系依次判断每个选项得到答案.【详解】对于①,当m∥n时,由直线与平面平行的定义和判定定理,不能得出m∥α,①错误;对于②,当m⊂α,n⊂α,且m∥β,n∥β时,由两平面平行的判定定理,不能得出α∥β,②错误;对于③,当α∥β,且m⊂α,n⊂β时,由两平面平行的性质定理,不能得出m∥n,③错误;对于④,当α⊥β,且α∩β=m,n⊂α,m⊥n时,由两平面垂直的性质定理,能够得出n⊥β,④正确;综上知,正确命题的序号是④.故答案为:④.【点睛】本题考查了直线和平面,平面和平面的位置关系,意在考查学生的空间想象能力和推断能力.16.【解析】

由棱长为的正四面体求出外接球的半径,进而求出正三棱锥的高及侧棱长,可得正三棱锥的三条侧棱两两相互垂直,进而求出体积与表面积,设内切圆的半径,由等体积,求出内切圆的半径.【详解】由题意可知:多面体的外接球即正四面体的外接球作面交于,连接,如图则,且为外接球的直径,可得,设三角形的外接圆的半径为,则,解得,设外接球的半径为,则可得,即,解得,设正三棱锥的高为,因为,所以,所以,而,所以正三棱锥的三条侧棱两两相互垂直,所以,设内切球的半径为,,即解得:.故答案为:.【点睛】本题考查多面体与球的内切和外接问题,考查转化与化归思想,考查空间想象能力、运算求解能力,求解时注意借助几何体的直观图进行分析.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)①见解析,②见解析;(2)见解析【解析】

(1)①把代入函数解析式,求出函数的导函数得到,再求出,利用直线方程的点斜式求函数在点处的切线方程;②令,利用导数研究函数的单调性,可得当时,;当时,;当时,.(2)由题意,,在上有唯一零点.利用导数可得当时,在上单调递减,当,时,在,上单调递增,得到.由在恒成立,且有唯一解,可得,得,即.令,则,再由在上恒成立,得在上单调递减,进一步得到在上单调递增,由此可得.【详解】解:(1)①当时,,,,又,切线方程为,即;②令,则,在上单调递减.又,当时,,即;当时,,即;当时,,即.证明:(2)由题意,,而,令,解得.,,在上有唯一零点.当时,,在上单调递减,当,时,,在,上单调递增..在恒成立,且有唯一解,,即,消去,得,即.令,则,在上恒成立,在上单调递减,又,,.在上单调递增,.【点睛】本题考查利用导数研究过曲线上某点处的切线方程,考查利用导数研究函数的单调性,考查逻辑思维能力与推理论证能力,属难题.18.(1);(2).【解析】

(1)根据椭圆的离心率为,得到,根据直线与圆的位置关系,得到原心到直线的距离等于半径,得到,从而求得,进而求得椭圆的方程;(2)分直线的斜率存在是否为0与不存在三种情况讨论,写出直线的方程,与椭圆方程联立,利用韦达定理,向量的数量积,结合已知条件求得结果.【详解】(1)由离心率为,可得,,且以原点O为圆心,椭圆C的长半轴长为半径的圆的方程为,因与直线相切,则有,即,,,故而椭圆方程为.(2)①当直线l的斜率不存在时,,,由于;②当直线l的斜率为0时,,,则;③当直线l的斜率不为0时,设直线l的方程为,,,由及,得,有,∴,,,,∴,综上所述:.【点睛】该题考查直线与圆锥曲线的综合问题,椭圆的标准方程,考查直线与椭圆的位置关系,求向量数量积,在解题的过程中,注意对直线方程的分类讨论,属于中档题目.19.(1)见解析,有99%的把握认为经常阅读与居民居住地有关.(2)【解析】

(1)根据题中数据得到列联表,然后计算出,与临界值表中的数据对照后可得结论;(2)由题意得概率为古典概型,根据古典概型概率公式计算可得所求.【详解】(1)由题意可得:城镇居民农村居民合计经常阅读10030130不经常阅读403070合计14060200则,所以有99%的把握认为经常阅读与居民居住地有关.(2)在城镇居民140人中,经常阅读的有100人,不经常阅读的有40人.采取分层抽样抽取7人,则其中经常阅读的有5人,记为、、、、;不经常阅读的有2人,记为、.从这7人中随机选取2人作交流发言,所有可能的情况为,,,,,,,,,,,,,,,,,,,,,共21种,被选中的位居民都是经常阅读居民的情况有种,所求概率为.【点睛】本题主要考查古典概型的概率计算,以及独立性检验的应用,利用列举法是解决本题的关键,考查学生的计算能力.对于古典概型,要求事件总数是可数的,满足条件的事件个数可数,使得满足条件的事件个数除以总的事件个数即可,属于中档题.20.(1)列联表见解析,在犯错误的概率不超过0.01的前提下,认为支付方式与年龄有关;(2)分布列见解析,期望为.【解析】

(1)根据题中所给的条件补全列联表,根据列联表求出观测值,把观测值同临界值进行比较,得到能在犯错误的概率不超过0.01的前提下,认为支付方式与年龄有关.(2)首先确定的取值,求出相应的概率,可得分布列和数学期望.【详解】(1)根据题意及列联表可得完整的列联表如下:35岁以下(含35岁)35岁以上合计使用移动支付401050不使用移动支付104050合计5050100根据公式可得,所以在犯错误的概率不超过0.01的前提下,认为支付方式与年龄有关.(2)根据分层抽样,可知35岁以下(含35岁)的人数为8人,35岁以上的有2人,所以获得奖励的35岁以下(含35岁)的人数为,则的可能为1,2,3,且,,,其分布列为123.【点睛】独立

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论