下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省泰安市肥城实验初级中学2021年高一数学文联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知,则的值 (
)A.2
B.2或0
C.4
D.4或0参考答案:D略2.函数的最小正周期是(
)A.
B.
C.
D.参考答案:D
解析:3.在△ABC中的内角A、B、C所对的边a、b、c根据下列条件解三角形,其中有两个解的是(
).A.b=10,A=45°,C=70° B.a=60,c=48,B=60°C.a=7,b=5,A=80° D.a=14,b=16,A=45°参考答案:D【分析】对每一个选项逐一分析得解.【详解】对于选项A,B=65°,所以所以a只有一解,所以三角形只有一解;对于选项B,由余弦定理得,b只有一解,所以三角形只有一解;对于选项C,由正弦定理得,因为b<a,所以B只有一解,所以三角形只有一解;对于选项D,由正弦定理得.因为,所以,所以三角形有两个解.故选:D.4.下列函数中,既是奇函数又是增函数的为
A.
B.
C.
D.参考答案:A
5.若平面和直线a,b满足,,则a与b的位置关系一定是(
)A.相交 B.平行 C.异面 D.相交或异面参考答案:D【分析】当时与相交,当时与异面.【详解】当时与相交,当时与异面.故答案为D【点睛】本题考查了直线的位置关系,属于基础题型.6.已知,则的值为(
)A.
B.
C.0
D.1参考答案:D略7.圆x2+y2+ax+2=0过点A(3,1),则的取值范围是()A.[﹣1,1] B.(﹣∞,1]∪[1,+∞) C.(﹣1,0)∪(0,1) D.[﹣1,0)∪(0,1]参考答案:A【考点】直线与圆的位置关系.【分析】确定x2+y2﹣4x+2=0的圆心为(2,0),半径为,设k=,即kx﹣y=0,圆心到直线的距离d=,即可求出的取值范围.【解答】解:∵圆x2+y2+ax+2=0过点A(3,1),∴9+1+3a+2=0,∴a=﹣4,∴x2+y2﹣4x+2=0的圆心为(2,0),半径为,设k=,即kx﹣y=0,圆心到直线的距离d=,∴﹣1≤k≤1,故选A.【点评】本题考查点与圆、直线与圆的位置关系,考查点到直线的距离公式,属于中档题.8.已知定义域为的函数在上为减函数,且函数为偶函数,则()(A)
(B)
(C)
(D)参考答案:D9.已知角满足,则A、
B、
C、
D、参考答案:D将代入,解得,根据二倍角公式知.故选D.10.(5分)如图的组合体的结构特征是() A. 一个棱柱中截去一个棱柱 B. 一个棱柱中截去一个圆柱 C. 一个棱柱中截去一个棱锥 D. 一个棱柱中截去一个棱台参考答案:C考点: 棱柱的结构特征.专题: 空间位置关系与距离.分析: 由棱柱和棱锥的定义,可知该图形为四棱柱截取一个角即三棱锥可得的组合体.解答: 如图所示的图形,可看成是四棱柱截取一个角即三棱锥可得的组合体.故为一个棱柱中截去一个棱锥所得.故选C.点评: 本题考查空间几何体的特征,主要考查棱柱和棱锥的特征,属于基础题.二、填空题:本大题共7小题,每小题4分,共28分11.在20瓶饮料中,有两瓶是过了保质期的,从中任取1瓶,恰为过保质期的概率为_
___参考答案:1/10略12.函数的递减区间为.参考答案:(5,+∞)【考点】复合函数的单调性.【专题】计算题;函数的性质及应用.【分析】求出函数的定义域,确定内外函数的单调性,即可得到结论.【解答】解:由x2﹣4x﹣5>0,可得x<﹣1或x>5令t=x2﹣4x﹣5=(x﹣2)2﹣9,则函数在(5,+∞)上单调递增∵在定义域内为单调递减∴函数的递减区间为(5,+∞)故答案为:(5,+∞)【点评】本题考查复合函数的单调性,考查学生的计算能力,确定内外函数的单调性是关键.13.若幂函数y=(m2﹣2m﹣2)x﹣4m﹣2在x∈(0,+∞)上为减函数,则实数m的值是__________.参考答案:3考点:幂函数的概念、解析式、定义域、值域.专题:计算题;函数的性质及应用.分析:根据给出的函数为幂函数,由幂函数概念知m2﹣m﹣1=1,再根据函数在(0,+∞)上为减函数,得到幂指数应该小于0,求得的m值应满足以上两条.解答:解:因为函数y=(m2﹣2m﹣2)x﹣4m﹣2既是幂函数又是(0,+∞)的减函数,所以,?,解得:m=3.故答案为:m=3.点评:本题考查了幂函数的概念及性质,解答此题的关键是掌握幂函数的定义,此题极易把系数理解为不等于0而出错,属基础题14.已知函数f(x)=x2﹣2ax+b是定义在区间[﹣2b,3b﹣1]上的偶函数,则函数f(x)的值域为.参考答案:[1,5]∵函数在区间上的偶函数∴∴即[1,5].
15.给出五组函数:①,;②
,
;③,
;
④,
;⑤,。
各组中的两个函数是同一函数的有______________(写出序号即可)参考答案:④16.已知角α是第二象限的角,且,则tanα=.参考答案:﹣2【考点】同角三角函数间的基本关系;任意角的三角函数的定义.【专题】计算题;三角函数的求值.【分析】由α为第二象限角,根据sinα的值,利用同角三角函数间的基本关系求出cosα的值,即可求出tanα的值.【解答】解:∵角α为第二象限角,且sinα=,∴cosα=﹣=﹣,则tanα==﹣2,故答案为:﹣2【点评】此题考查了同角三角函数间的基本关系,熟练掌握基本关系是解本题的关键.17.α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β.②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m?α,那么m∥β.④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题是
(填序号)参考答案:②③④【考点】2K:命题的真假判断与应用;LO:空间中直线与直线之间的位置关系;LP:空间中直线与平面之间的位置关系.【分析】根据空间直线与平面的位置关系的判定方法及几何特征,分析判断各个结论的真假,可得答案.【解答】解:①如果m⊥n,m⊥α,n∥β,不能得出α⊥β,故错误;②如果n∥α,则存在直线l?α,使n∥l,由m⊥α,可得m⊥l,那么m⊥n.故正确;③如果α∥β,m?α,那么m与β无公共点,则m∥β.故正确④如果m∥n,α∥β,那么m,n与α所成的角和m,n与β所成的角均相等.故正确;故答案为:②③④三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.当时,解关于的不等式。参考答案:解:因为,不等式可化为,下面对和1的大小讨论:①当,即时,不等式化为,解集为空集;②当,即时,不等式解集为;③当,即时,不等式解集为。
19.已知正项数列{an}的前n项和为Sn,对任意,点都在函数的图象上.(1)求数列{an}的通项公式;(2)若数列,求数列{bn}的前n项和Tn;(3)已知数列{cn}满足,若对任意,存在使得成立,求实数a的取值范围.参考答案:(1);(2);(3).【分析】(1)将点代入函数的解析式得到,令,由可求出的值,令,由得,两式相减得出数列为等比数列,确定该数列的公比,利用等比数列的通项公式可求出数列的通项公式;(2)求出数列的通项公式,利用错位相减法求出数列的前项和;(3)利用分组求和法与裂项法求出数列的前项和,由题意得出,判断出数列各项的符号,得出数列的最大值为,利用函数的单调性得出该函数在区间上的最大值为,然后解不等式可得出实数的取值范围.【详解】(1)将点代入函数的解析式得到.当时,,即,解得;当时,由得,上述两式相减得,得,即.所以,数列是以2为首项,以2为公比的等比数列,因此,;(2),,因此,①,②由①②得,所以;(3).令为的前项和,则.因为,,,,当时,,令,,令,则,当时,,此时,数列为单调递减数列,,则,即,那么当时,数列为单调递减数列,此时,则.因此,数列的最大值为.又,函数单调递增,此时,函数的最大值为.因为对任意的,存在,.所以,解得,因此,实数的取值范围是.【点睛】本题考查利用等比数列前项和求数列通项,同时也考查了错位相减法求和以及数列不等式恒成立问题,解题时要充分利用数列的单调性求出数列的最大项或最小项的值,考查化归与转化思想的应用,属于难题.20.(本小题满分12分)已知函数=x2-4x+a+3,g(x)=mx+5-2m.(1)若方程f(x)=0在[-1,1]上有实数根,求实数a的取值范围;(2)当a=0时,若对任意的x1∈[1,4],总存在x2∈[1,4],使f(x1)=g(x2)成立,求实数m的取值范围;(3)若函数y=f(x)(x∈[t,4])的值域为区间D,是否存在常数t,使区间D的长度为7-2t?若存在,求出t的值;若不存在,请说明理由(注:区间[p,q]的长度为q-p).参考答案:(1):因为函数=x2-4x+a+3的对称轴是x=2,所以在区间[-1,1]上是减函数,因为函数在区间[-1,1]上存在零点,则必有:即,解得,故所求实数a的取值范围为[-8,0].(2)若对任意的x1∈[1,4],总存在x2∈[1,4],使f(x1)=g(x2)成立,只需函数y=f(x)的值域为函数y=g(x)的值域的子集.=x2-4x+3,x∈[1,4]的值域为[-1,3],下求g(x)=mx+5-2m的值域.①当m=0时,g(x)=5-2m为常数,不符合题意舍去;②当m>0时,g(x)的值域为[5-m,5+2m],要使[-1,3][5-m,5+2m],需,解得m≥6;③当m<0时,g(x)的值域为[5+2m,5-m],要使[-1,3][5+2m,5-m],需,解得m≤-3;综上,m的取值范围为.(3)由题意知,可得.①当t≤0时,在区间[t,4]上,f(t)最大,f(2)最小,所以f(t)-f(2)=7-2t即t2-2t-3=0,解得t=-1或t=3(舍去);②当0<t≤2时,在区间[t,4]上,f(4)最大,f(2)最小,所以f(4)-f(2)=7-2t即4=7-2t,解得t=;③当2<t<时,在区间[t,4]上,f(4)最大,f(t)最小,所以f(4)-f(t)=7-2t即t2-6t+7=0,解得t=(舍去)综上所述,存在常数t满足
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度临建场地安全防护工程承包合同4篇
- 二零二四年度上海升学家庭教育培训与规划合同3篇
- 二零二五年度国际多式联运服务合同标准4篇
- 二零二四年国际珠宝首饰展览会合作合同范本3篇
- 广东吊装施工方案模板
- 2025年婚恋交友和解合同
- 2025年婚姻财产分割协议
- 二零二五年度茶楼茶艺课程开发及推广协议3篇
- 专业室内设计师2024年服务协议样本版
- 二零二五版城市排水系统零星工程修复合同4篇
- 领导沟通的艺术
- 发生用药错误应急预案
- 南浔至临安公路(南浔至练市段)公路工程环境影响报告
- 绿色贷款培训课件
- 大学生预征对象登记表(样表)
- 主管部门审核意见三篇
- 初中数学校本教材(完整版)
- 父母教育方式对幼儿社会性发展影响的研究
- 新课标人教版数学三年级上册第八单元《分数的初步认识》教材解读
- (人教版2019)数学必修第一册 第三章 函数的概念与性质 复习课件
- 重庆市铜梁区2024届数学八上期末检测试题含解析
评论
0/150
提交评论