




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
菱形的性质与判定一、选择题1、下列说法中不正确的是()A.四边相等的四边形是菱形 B.对角线垂直的平行四边形是菱形 C.菱形的对角线互相垂直且相等 D.菱形的邻边相等2、如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于H,连接OH,∠DHO=20°,则∠CAD的度数是()A.20°B.25°C.30°D.40°3、已知菱形ABCD中,对角线AC与BD交于点O,∠BAD=120°,AC=4,则该菱形的面积是()A.16 B.16 C.8 D.84、已知▱ABCD,给出下列条件:①AC=BD;②∠BAD=90°;③AB=BC;④AC⊥BD,添加其中之一能使▱ABCD成为菱形的条件是()A.①③ B.②③ C.③④ D.①②③5、如图,两张等宽的纸条交叉重叠在一起,重叠的部分为四边形ABCD,若测得点A,C之间的距离为6cm,点B,D之间的距离为8cm,则线段AB的长为()A.5cm B. C. D.4cm6、如图,在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列条件能判定四边形AEDF是菱形的是()A.AD⊥BC B.AD为BC边上的中线 C.AD=BD D.AD平分∠BAC7、如图,等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD,则下列结论:①AD=BC;②BD、AC互相平分;③四边形ACED是菱形.其中正确的个数是()A.0 B.1 C.2 D.38、如图平行四边形ABCD中,∠A=110°,AD=DC.E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠PEF=()A.35° B.45° C.50° D.55°9、如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()A.1 B.2 C.3 D.410、如图,∠ACB=90°,∠BAC=30°,△ABD和△ACE都是等边三角形,F为AB中点,DE交AB于G点,下列结论中,正确的结论有()个.①EF⊥AC;②四边形ADFE是菱形;③AD=4AG;④△DBF≌△EFA.A.1 B.2 C.3 D.4二、填空题11、如图,菱形ABCD的对角线AC,BD的长分别为6和8,则这个菱形的周长是()A.20B.24C.40D.4812、如图,菱形ABCD中,对角线AC与BD相交于点O,且AC=8,BD=6,则菱形ABCD的高DH=.13、如图,直线l是四边形ABCD的对称轴,若AD=CB,下面四个结论中:①AD∥CB;②AC⊥BD;③AO=OC;④AB⊥BC,一定正确的结论的序号是.14、如图,在四边形ABCD中,E、F、G、H分别是AB、BD、CD、AC的中点,要使四边形EFGH是菱形,四边形ABCD还应满足的一个条件是.15、如图,在菱形ABCD中,∠B=60°,AB=2cm,E,F分别是BC,CD的中点,连接AE,EF,AF,则△AEF的周长为________16、如图,在△ABC中,∠ABC=90°,BD为AC边上的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AG=13,BG=5,则CF的长为.17、如图所示,菱形ABCD,在边AB上有一动点E,过菱形对角线交点O作射线EO与CD边交于点F,线段EF的垂直平分线分别交BC、AD边于点G、H,得到四边形EGFH,点E在运动过程中,有如下结论:①可以得到无数个平行四边形EGFH;②可以得到无数个矩形EGFH;③可以得到无数个菱形EGFH;④至少得到一个正方形EGFH.所有正确结论的序号是.18、如图,在Rt△ABC中,∠BAC=90°,∠ABC的平分线交AC于D.过点A作AE⊥BC于E,交BD于G,过点D作DF⊥BC于F,过点G作GH∥BC,交AC于点H,则下列结论:①∠BAE=∠C;②S△ABG:S△EBG=AB:BE;③∠ADF=2∠CDF;④四边形AGFD是菱形;⑤CH=DF.其中正确的结论是.三、解答题19、如图,在▱ABCD中,E,F分别是AD,BC上的点,且DE=BF,AC⊥EF.(1)求证:四边形AECF是菱形.(2)若AB=6,BC=10,F为BC中点,求四边形AECF的面积.20、如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC且DE=AC,连接CE、OE,连接AE交OD于点F.(1)求证:OE=CD;(2)若菱形ABCD的边长为2,∠ABC=60°.求AE的长.21、已知等腰△ABC中,AB=AC,AD平分∠BAC交BC于D点,在线段AD上任取一点P(A点除外),过P点作EF∥AB,分别交AC,BC于E,F点,作PM∥AC,交AB于M点,连结ME.(1)求证:四边形AEPM为菱形;(2)当P点在何处时,菱形AEPM的面积为四边形EFBM面积的一半?22、如图,在四边形ABCD中,∠BAC=90°,点E是BC的中点,AD∥BC,AE∥DC,EF⊥CD于点F.(1)求证:四边形AECD是菱形;(2)若AB=3,BC=5,求EF的长.23、如图,已知在△ADE中,∠ADE=90°,点B是AE的中点,过点D作DC∥AE,DC=AB,连结BD、CE.(1)求证:四边形BDCE是菱形;(2)若AD=8,BD=6,求菱形BDCE的面积.24、在四边形ABCD中,AD∥BC,AC平分∠BAD,BD平分∠ABC.(1)如图1,求证:四边形ABCD是菱形;(2)如图2,过点D作DE⊥BD交BC延长线于点E,在不添加任何辅助线的情况下,请直接写出图中所有与△CDE面积相等的三角形(△CDE除外)25、如图,平行四边形ABCD中,AB⊥AC,AB=1,BC=.对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F.(1)证明:当旋转角为90°时,四边形ABEF是平行四边形;(2)试说明在旋转过程中,线段AF与EC总保持相等;(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时AC绕点O顺时针旋转的度数.26、如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于F,以EC、CF为邻边作平行四边形ECFG,如图1所示.(1)证明平行四边形ECFG是菱形;(2)若∠ABC=120°,连结BG、CG、DG,如图2所示,①求证:△DGC≌△BGE;②求∠BDG的度数;(3)若∠ABC=90°,AB=8,AD=14,M是EF的中点,如图3所示,求DM的长.(答案)一、选择题1、下列说法中不正确的是()A.四边相等的四边形是菱形 B.对角线垂直的平行四边形是菱形 C.菱形的对角线互相垂直且相等 D.菱形的邻边相等【解析】解:A.四边相等的四边形是菱形;正确;B.对角线垂直的平行四边形是菱形;正确;C.菱形的对角线互相垂直且相等;不正确;D.菱形的邻边相等;正确;故选:C.2、如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于H,连接OH,∠DHO=20°,则∠CAD的度数是()A.20°B.25°C.30°D.40°【解析】试题解析:∵四边形ABCD是菱形,∴OB=OD,AC⊥BD,∵DH⊥AB,∴OH=OB=BD,∵∠DHO=20°,∴∠OHB=90°-∠DHO=70°,∴∠ABD=∠OHB=70°,∴∠CAD=∠CAB=90°-∠ABD=20°.故选A.3、已知菱形ABCD中,对角线AC与BD交于点O,∠BAD=120°,AC=4,则该菱形的面积是()A.16 B.16 C.8 D.8【详解】在菱形ABCD中,有AB=AC∵∠BAD=120°,∴∠ABC=60°,∴△ABC为等边三角形,即AB=AC=BC=4作AE⊥BC于点E,∴BE=2,AE=∴S菱形ABCD=BC·AE=4×=故选C4、已知▱ABCD,给出下列条件:①AC=BD;②∠BAD=90°;③AB=BC;④AC⊥BD,添加其中之一能使▱ABCD成为菱形的条件是()A.①③ B.②③ C.③④ D.①②③试题解析:∵四边形ABCD是平行四边形,①若AC=BD,可得四边形ABCD是矩形,故①错误,②中∠BAD=90°,得到一矩形,不是菱形,所以②错误,③中一组邻边相等,也可得到一菱形,所以③成立,④若AC⊥BD,则可得其为菱形,④成立,故选C.5、如图,两张等宽的纸条交叉重叠在一起,重叠的部分为四边形ABCD,若测得点A,C之间的距离为6cm,点B,D之间的距离为8cm,则线段AB的长为()A.5cm B. C. D.4cm【解析】解:作AR⊥BC于R,AS⊥CD于S,连接AC、BD交于点O.由题意知:AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∵两个矩形等宽,∴AR=AS,∵AR•BC=AS•CD,∴BC=CD,∴平行四边形ABCD是菱形,∴AC⊥BD,在Rt△AOB中,∵OA=3,OB=4,∴AB==5,故选:A.6、如图,在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列条件能判定四边形AEDF是菱形的是()A.AD⊥BC B.AD为BC边上的中线 C.AD=BD D.AD平分∠BAC【解析】解:添加AD平分∠BAC可判定四边形AEDF是菱形,理由如下:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形.∵AD平分∠BAC,∴∠BAD=∠CAD,∵DE∥AC,∴∠DAC=∠ADE,∴∠DAB=∠ADE,∴AE=DE,∴平行四边形AEDF是菱形,故选:D.7、如图,等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD,则下列结论:①AD=BC;②BD、AC互相平分;③四边形ACED是菱形.其中正确的个数是()A.0 B.1 C.2 D.3【详解】∵由已知和平移的性质,△ABC、△DCE都是是等边三角形,∴∠ACB=∠DCE=60°,AC=CD,∴∠ACD=180°-∠ACB-∠DCE=60°.∴△ACD是等边三角形.∴AD=AC=BC.故①正确;由①可得AD=BC,∵AB=CD,∴四边形ABCD是平行四边形.∴BD、AC互相平分,故②正确.由①可得AD=AC=CE=DE,故四边形ACED是菱形,即③正确.综上可得①②③正确,共3个.故选D8、如图平行四边形ABCD中,∠A=110°,AD=DC.E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠PEF=()A.35° B.45° C.50° D.55°【解答】解:∵平行四边形ABCD中,AD=DC,∴四边形ABCD为菱形,∴AB=BC,∠ABC=180°﹣∠A=70°,∵E,F分别为AB,BC的中点,∴BE=BF,∠BEF=∠BFE=55°,∵PE⊥AB,∴∠PEB=90°∴∠PEF=90°﹣55°=35°,故选:A.9、如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()A.1 B.2 C.3 D.4试题分析:作F点关于BD的对称点F′,则PF=PF′,连接EF′交BD于点P.∴EP+FP=EP+F′P.由两点之间线段最短可知:当E、P、F′在一条直线上时,EP+FP的值最小,此时EP+FP=EP+F′P=EF′.∵四边形ABCD为菱形,周长为12,∴AB=BC=CD=DA=3,AB∥CD,∵AF=2,AE=1,∴DF=AE=1,∴四边形AEF′D是平行四边形,∴EF′=AD=3.∴EP+FP的最小值为3.故选C.10、如图,∠ACB=90°,∠BAC=30°,△ABD和△ACE都是等边三角形,F为AB中点,DE交AB于G点,下列结论中,正确的结论有()个.①EF⊥AC;②四边形ADFE是菱形;③AD=4AG;④△DBF≌△EFA.A.1 B.2 C.3 D.4【解答】解:①如图,连接CF,∵∠ACB=90°,F为AB中点,∴CFAB=AF,∴点F在AC的垂直平分线上,∵△ACE是等边三角形,∴AE=CE,∴点E在AC的垂直平分线上,∴EF⊥AC,①正确;②∵△ABD是等边三角形,F是AB中点,∴DF⊥AB,∴AD>DF,∴四边形ADFE不可能是菱形,②不正确;③∵△ABD是等边三角形,∴AB=AD=BD,∠DAB=60°,∵∠ACB=90°,∠BAC=30°,∴∠ABC=60°,∴∠DAB=∠ABC=60°,∴AD∥BC,∵AC⊥EF,∠ACB=90°,∴EF∥AD,∴AD∥EF,∵△ACE是等边三角形,EF⊥AC,∴∠AEC=∠CAE=60°,∠AEF=30°,∴EF=2AF=AB,∴AD=EF,∴四边形ADFE是平行四边形,∴AG=AF=AB=AD,∴AD=4AG,③正确;④∵四边形ADFE是平行四边形,∴AE=DF,AD=FE,∵AD=BD,∴BD=FE,又∵AF=FB,∴△DBF≌△EFA(SSS),④正确;正确的结论有3个,故选:C.二、填空题11、如图,菱形ABCD的对角线AC,BD的长分别为6和8,则这个菱形的周长是()A.20B.24C.40D.48[解析]由菱形对角线性质知,AO=eq\f(1,2)AC=3,BO=eq\f(1,2)BD=4,且AO⊥BO,则AB=eq\r(AO2+BO2)=5,故这个菱形的周长=4AB=20.12、如图,菱形ABCD中,对角线AC与BD相交于点O,且AC=8,BD=6,则菱形ABCD的高DH=.试题分析:在菱形ABCD中,AC⊥BD,∵AC=8,BD=6,∴OA=AC=×8=4,OB=BD=×6=3,在Rt△AOB中,由勾股定理可得AB=5,∵DH⊥AB,∴菱形ABCD的面积=AC•BD=AB•DH,即×6×8=5•DH,解得DH=.13、如图,直线l是四边形ABCD的对称轴,若AD=CB,下面四个结论中:①AD∥CB;②AC⊥BD;③AO=OC;④AB⊥BC,一定正确的结论的序号是.【解答】解:∵直线l是四边形ABCD的对称轴,∴AD=AB,CD=CB,∵AD=BC,∴AD=CD=AB=CD,∴四边形ABCD是菱形,∴①AD∥CB,正确;②AC⊥BD,正确;③AO=OC,正确;④AB不一定垂直于BC,错误.故正确的是①②③.故答案为:①②③.14、如图,在四边形ABCD中,E、F、G、H分别是AB、BD、CD、AC的中点,要使四边形EFGH是菱形,四边形ABCD还应满足的一个条件是.解:条件是AD=BC.∵EH、GF分别是△ABC、△BCD的中位线,∴EH∥=BC,GF∥=BC,∴EH∥=GF,∴四边形EFGH是平行四边形.要使四边形EFGH是菱形,则要使AD=BC,这样,GH=AD,∴GH=GF,∴四边形EFGH是菱形.15、如图,在菱形ABCD中,∠B=60°,AB=2cm,E,F分别是BC,CD的中点,连接AE,EF,AF,则△AEF的周长为________[解析]由“边角边”可证明△ABE≌△ADF,则AE=AF,故△AEF为等腰三角形.根据菱形的性质与∠B=60°,AB=2cm,可得∠BAE=∠DAF=30°,所以∠EAF=60°,AE=eq\r(3)cm,所以△AEF为等边三角形且边长为eq\r(3)cm,所以其周长为3eq\r(3)cm.16、如图,在△ABC中,∠ABC=90°,BD为AC边上的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AG=13,BG=5,则CF的长为.【解答】解:∵AG∥BD,BD=FG,∴四边形BGFD是平行四边形,∵CF⊥BD,∴CF⊥AG,又∵点D是AC中点,∴BD=DF=AC,∴四边形BGFD是菱形,∴GF=BG=5,则AF=13﹣5=8,AC=2×5=10,∵在Rt△ACF中,∠CFA=90°,∴AF2+CF2=AC2,即82+CF2=102,解得:CF=6.故答案是:6.17、如图所示,菱形ABCD,在边AB上有一动点E,过菱形对角线交点O作射线EO与CD边交于点F,线段EF的垂直平分线分别交BC、AD边于点G、H,得到四边形EGFH,点E在运动过程中,有如下结论:①可以得到无数个平行四边形EGFH;②可以得到无数个矩形EGFH;③可以得到无数个菱形EGFH;④至少得到一个正方形EGFH.所有正确结论的序号是.【解答】解:如图,∵四边形ABCD是菱形,∴AO=CO,AD∥BC,AB∥CD,∴∠BAO=∠DCO,∠AEO=∠CFO,∴△AOE≌△COF(AAS),∴OE=OF,∵线段EF的垂直平分线分别交BC、AD边于点G、H,∴GH过点O,GH⊥EF,∵AD∥BC,∴∠DAO=∠BCO,∠AHO=∠CGO,∴△AHO≌△CGO(AAS),∴HO=GO,∴四边形EGFH是平行四边形,∵EF⊥GH,∴四边形EGFH是菱形,∵点E是AB上的一个动点,∴随着点E的移动可以得到无数个平行四边形EGFH,随着点E的移动可以得到无数个菱形EGFH,故①③正确;若四边形ABCD是正方形,∴∠BOC=90°,∠GBO=∠FCO=45°,OB=OC;∵EF⊥GH,∴∠GOF=90°;∠BOG+∠BOF=∠COF+∠BOF=90°∴∠BOG=∠COF;在△BOG和△COF中,∴△BOG≌△COF(ASA);∴OG=OF,同理可得:EO=OH,∴GH=EF;∴四边形EGFH是正方形,∵点E是AB上的一个动点,∴至少得到一个正方形EGFH,故④正确,故答案为:①③④.18、如图,在Rt△ABC中,∠BAC=90°,∠ABC的平分线交AC于D.过点A作AE⊥BC于E,交BD于G,过点D作DF⊥BC于F,过点G作GH∥BC,交AC于点H,则下列结论:①∠BAE=∠C;②S△ABG:S△EBG=AB:BE;③∠ADF=2∠CDF;④四边形AGFD是菱形;⑤CH=DF.其中正确的结论是.【解答】解:①∵∠BAC=90°,∴∠BAE+∠CAE=90°,∵AE⊥BC,∴∠C+∠CAE=90°,∴∠BAE=∠C,①正确;②作AM∥BD交CB的延长线于M,如图所示:则∠M=∠CBD,∠BAM=∠ABD,∵BD平分∠ABC,∴∠CBD=∠ABD,∴∠M=∠BAM,∴AB=BM,∵AM∥BD,∴AG:GE=BM:BE,∴AG:GE=AB:BE,∵S△ABG:S△EBG=AG:GE,∴S△ABG:S△EBG=AB:BE;②正确;④∵∠AGD=∠ABD+∠BAE,∠ADG=∠CBD+∠C,∠BAE=∠C,∠CBD=∠ABD,∴∠AGD=∠ADG,∴AG=AD,∵∠BAC=90°,BD平分∠ABC.DF⊥BC,∴AD=DF,∴AG=DF,∵AE⊥BC,∴AG∥DF,∴四边形AGFD是平行四边形,又∵AG=AD,∴四边形AGFD是菱形;④正确;⑤∵四边形AGFD是菱形;∴∠AGD=∠FGD,GF=DF,∠ADB=∠FDB,∴∠AGB=∠FGB,在△ABG和△FBG中,,∴△ABG≌△FBG(AAS),∴∠BAE=∠BFG,∵∠BAE=∠C,∴∠BFG=∠C,∴GF∥CH,∵GH∥BC,∴四边形GFCH是平行四边形,∴GF=CH,∴CH=DF,⑤正确;③∵∠ADF=2∠ADB,当∠C=30°,∠CDF=60°,则∠ADF=120°,∴∠ADF=2∠CDF;③不正确;故答案为:①②④⑤.三、解答题19、如图,在▱ABCD中,E,F分别是AD,BC上的点,且DE=BF,AC⊥EF.(1)求证:四边形AECF是菱形.(2)若AB=6,BC=10,F为BC中点,求四边形AECF的面积.【解答】证明:(1)如图,∵四边形ABCD是平行四边形,AD=BC,且AD∥BC,DE=BF,∴AE=CF,且AE∥CF,∴四边形AECF为平行四边形,∵AC⊥EF,∴四边形AECF为菱形;(2)∵四边形AECF是菱形,∴AO=CO,∵F为BC中点,∴FO∥AB,FOAB=3,∴∠BAC=∠FOC=90°,EF=6,∵AB=6,BC=10,∴AC=8,∴S菱形AECF=24.20、如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC且DE=AC,连接CE、OE,连接AE交OD于点F.(1)求证:OE=CD;(2)若菱形ABCD的边长为2,∠ABC=60°.求AE的长.【解析】(1)证明:在菱形ABCD中,OCAC.∴DE=OC.∵DE∥AC,∴四边形OCED是平行四边形.∵AC⊥BD,∴平行四边形OCED是矩形.∴OE=CD.(2)在菱形ABCD中,∠ABC=60°,∴AC=AB=2.∴在矩形OCED中,CE=OD.在Rt△ACE中,AE.21、已知等腰△ABC中,AB=AC,AD平分∠BAC交BC于D点,在线段AD上任取一点P(A点除外),过P点作EF∥AB,分别交AC,BC于E,F点,作PM∥AC,交AB于M点,连结ME.(1)求证:四边形AEPM为菱形;(2)当P点在何处时,菱形AEPM的面积为四边形EFBM面积的一半?(1)证明:因为EF∥AB,PM∥AC,所以四边形AEPM为平行四边形. 因为AB=AC,AD平分∠CAB,所以∠CAD=∠BAD,所以AD⊥BC因为∠BAD=∠EPA,所以∠CAD=∠EPA, 因为EA=EP,所以四边形AEPM为菱形.(2)解:P为EF中点时,.∵四边形AEPM为菱形,∴AD⊥EM,∵AD⊥BC,∴EM∥BC,又EF∥AB,∴四边形EFBM为平行四边形.作EN⊥AB于N,则22、如图,在四边形ABCD中,∠BAC=90°,点E是BC的中点,AD∥BC,AE∥DC,EF⊥CD于点F.(1)求证:四边形AECD是菱形;(2)若AB=3,BC=5,求EF的长.【答案】(1)证明:∵AD∥BC,AE∥DC,∴四边形AECD是平行四边形,∵∠BAC=90°,E是BC的中点,∴AE=CE=BC,∴四边形AECD是菱形;(2)解:过A作AH⊥BC于点H,如图所示:∵∠BAC=90°,AB=3,BC=5,∴AC===4,∵S△ABC=BC•AH=AB•AC,∴AH===,∵点E是BC的中点,BC=5,四边形AECD是菱形,∴CD=CE=,∵S▱AECD=CE•AH=CD•EF,∴EF=AH=.23、如图,已知在△ADE中,∠ADE=90°,点B是AE的中点,过点D作DC∥AE,DC=AB,连结BD、CE.(1)求证:四边形BDCE是菱形;(2)若AD=8,BD=6,求菱形BDCE的面积.【解答】(1)证明:在Rt△ADB中,∵∠ADB=90°,AB=BE,∴DBAB=AB=BE,∵DC∥BE,DC=AB=BE,∴四边形BECD是平行四边形,∵BD=BE,∴四边形BECD是菱形.(2)解:连接BC交DE于O.∵四边形DBEC是菱形,∴BC⊥DE,∴BO∥AD,∵AB=BE,∴DO=OE,∴OBAD=4,OD2,∴BC=8,DE=4,∴S菱形BDCE•BC•DE=16.24、在四边形ABCD中,AD∥BC,AC平分∠BAD,BD平分∠ABC.(1)如图1,求证:四边形ABCD是菱形;(2)如图2,过点D作DE⊥BD交BC延长线于点E,在不添加任何辅助线的情况下,请直接写出图中所有与△CDE面积相等的三角形(△CDE除外)【解答】(1)证明:∵BD平分∠ABC,∴∠ABD=∠CBD,∵AD∥BC,∴∠ADB=∠CBD,∴∠ABD=∠ADB=∠CBD,∴AB=AD,设AC、BD相交于点O,又∵AC平分∠BAD,∴BO=DO,AC⊥BD,在△AOD和△COB中,,∴△AOD≌△COB(ASA),∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形,又∵AB=AD,∴四边形ABCD是菱形;(2)∵DE⊥BD,AC⊥BD,∴AC∥DE,∵AD∥CE,∴四边形ACED是平行四边形,∴BC=AD=CE,∴图中所有与△CDE面积相等的三角形有△BCD,△ABD,△ACD,△ABC.25、如图,平行四边形ABCD中,AB⊥AC,AB=1,BC=.对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F.(1)证明:当旋转角为90°时,四边形ABEF是平行四边形;(2)试说明在旋转过程中,线段AF与EC总保持相等;(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时AC绕点O顺时针旋转的度数.解:(1)证明:当∠AOF=90°时,AB∥EF,又∵AF∥BE,∴四边形ABEF为平行四边形.(2)证明:∵四边形ABCD为平行四边形,∴AO=CO,∠FAO=∠ECO,∠AOF=∠COE.∴△AOF≌△COE.∴AF=EC(3)四边形BEDF可以是菱形.理由:如图,连接BF,DE,由(2)知△AOF≌△COE,得OE=OF,∴EF与BD互相平分.∴当EF⊥BD时,四边形BEDF为菱形.在Rt△ABC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 九江理工职业学院《数据库管理系统》2023-2024学年第二学期期末试卷
- 安徽省定远育才实验学校2025年高三3月摸底考试综合试题含解析
- 重庆理工职业学院《新世纪文学研究》2023-2024学年第一学期期末试卷
- 景德镇陶瓷大学《会展广告设计》2023-2024学年第一学期期末试卷
- 成都医学院《和声(3)》2023-2024学年第二学期期末试卷
- 河北中医药大学《麻醉解剖学》2023-2024学年第二学期期末试卷
- 四川工程职业技术学院《书法(Ⅰ)》2023-2024学年第二学期期末试卷
- 浙江省杭州市萧山区2025年初三质量检测试题(三模)化学试题试卷含解析
- 山东省武城县达标名校2025届初三下学期中考考前质量检测试题三(5月模拟)英语试题含答案
- 2025信息技术系统维护服务合同
- 《文化学概论》第三章-文化的起源及其发展-38
- 2024年四川省成都市中考地理+生物试卷真题(含答案解析)
- (必会)物业管理师(三级)考前冲刺知识点精练300题(含答案)
- JBT 14714-2024 锂离子电池X射线检测设备(正式版)
- 2024年江苏省无锡九年级中考数学选填压轴预测强化训练
- 王蔷《英语教学法》总复习练习(附答案)
- 广东省深圳市2024年七年级下册地理期中试卷附答案
- 艾滋病保密制度
- 两位数乘一位数计算质量作业口算题
- 荒山绿化方案
- 用户体验与用户界面设计培训:提高用户体验与用户界面设计的技术与方法
评论
0/150
提交评论