天津蓟县洪水庄乡洪水庄村中学2021-2022学年高二数学理模拟试题含解析_第1页
天津蓟县洪水庄乡洪水庄村中学2021-2022学年高二数学理模拟试题含解析_第2页
天津蓟县洪水庄乡洪水庄村中学2021-2022学年高二数学理模拟试题含解析_第3页
天津蓟县洪水庄乡洪水庄村中学2021-2022学年高二数学理模拟试题含解析_第4页
天津蓟县洪水庄乡洪水庄村中学2021-2022学年高二数学理模拟试题含解析_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

天津蓟县洪水庄乡洪水庄村中学2021-2022学年高二数学理模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知等比数列{an}的前10项的积为32,则以下命题为真命题的是()A.数列{an}的各项均为正数B.数列{an}中必有小于的项C.数列{an}的公比必是正数D.数列{an}中的首项和公比中必有一个大于1参考答案:C【考点】命题的真假判断与应用;等比数列的性质.【分析】由等比数列的性质可知,故q必是正数,故选项C为真命题;由可知a5可以为负数,故A为假命题;对于选项B,由于a5a6=2可以前10项全为,故B为假命题;对于选项D,由可得,可取q=1、均不大于1,故D为假命题.【解答】解:由等比数列的性质,a1a2a3…a10==32.∴a5a6=2,设公比为q,则,故q必是正数,故选项C为真命题.对于选项A,由可知a5可以为负数,故A为假命题;对于选项B,由a5a6=2可以前10项全为,故B为假命题;对于选项D,由可得,可取q=1、均不大于1,故D为假命题.故选C.2.命题“”的否定是(

)A. B.≤0 C. D.≤0参考答案:D3.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据,用最小二乘法建立的回归方程为则下列结论中不正确的是

(

)

A.y与x具有正的线性相关关系

B.回归直线过样本点的中心

C.若该大学某女生身高增加lcm,则其体重约增加0.85kg

D.若该大学某女生身高为170cm,则可断定其体重必为58.79kg参考答案:D4.设P为椭圆上一点,F1、F2为焦点,如果∠PF1F2=60o,∠PF2F1=30o,则椭圆的离心率为(

)A. B.

C.

D.

参考答案:D5.已知为定义在上的可导函数,且对于恒成立(为自然对数的底),则()A.

B.C.

D.与大小不确定参考答案:C6.过抛物线x2=4y的焦点F的直线与抛物线交于A,B两点,2|AF|=|BF|+|BA|,则|AB|=()A.3 B. C.4 D.参考答案:D【考点】抛物线的简单性质.【分析】由题意可设直线方程y=kx+1,与抛物线方程联立,化为关于y的一元二次方程,利用根与系数的关系得到A,B的纵坐标的乘积,结合2|AF|=|BF|+|BA|,求得A,B的纵坐标,则|AB|可求.【解答】解:由抛物线x2=4y,得F(0,1),若直线l⊥x轴,不合题意;设直线l的方程为y=kx+1,代入x2=4y,得y2﹣(4k2+2)y+1=0,设A(x1,y1),B(x2,y2),则y1+y2=4k2+2,y1y2=1,①∵|BF|+|BA|=2|FA|,∴|BF|+|BF|+|AF|=2|FA|,∴|FA|=2|BF|,即y1+1=2(y2+1),即代入①得,∴y1=2,则|AB|=.故选:D.【点评】本题考查抛物线的简单性质,考查运算求解能力,推理论证能力,考查化归与转化思想,是中档题.7.等差数列{an}的前n项和为Sn,若,则(

)A.-1 B.1 C.-2 D.2参考答案:A【分析】根据等差数列的性质化简已知条件,由此求得的值.【详解】依题意,故选A.【点睛】本小题主要考查等差数列性质的应用,考查化归与转化的数学思想方法,属于基础题.8..在方程(q为参数)表示的曲线上的一个点的坐标是(

)A.(2,-7)

B.(1,0)

C.(,)

D.(,)参考答案:C略9.现有男、女学生共人,从男生中选人,从女生中选人分别参加数学、物理、化学三科竞赛,共有种不同方案,那么男、女生人数分别是(

)A.男生人,女生人

B.男生人,女生人C.男生人,女生人

D.男生人,女生人.参考答案:B

解析:设男学生有人,则女学生有人,则

即10.在△ABC中,角A、B、C所对的边分别为a,b,c,则直线xsinA+ay+c=0与直线bx﹣ysinB+sinC=0的位置关系是()A.平行 B.垂直 C.重合 D.相交但不垂直参考答案:B【考点】直线的一般式方程与直线的垂直关系.【分析】利用正弦定理和直线的斜率的关系判断两直线的位置关系.【解答】解:∵直线xsinA+ay+c=0的斜率k1=﹣,直线bx﹣ysinB+sinC=0的斜率k2=,∴k1k2=﹣=﹣1.∴直线xsinA+ay+c=0与直线bx﹣ysinB+sinC=0垂直.故选:B.【点评】本题考查两直线的位置关系的判断,是基础题,解题时要认真审题,注意正弦定理的合理运用.二、填空题:本大题共7小题,每小题4分,共28分11.点的极坐标为

。参考答案:或写成12.已知函数f(x)=x3+x,对任意的m∈[-2,2],f(mx-2)+f(x)<0恒成立,则x的取值范围为________.参考答案:∵f′(x)=3x2+1>0恒成立,∴f(x)在R上是增函数.又f(-x)=-f(x),∴y=f(x)为奇函数.由f(mx-2)+f(x)<0得f(mx-2)<-f(x)=f(-x),∴mx-2<-x,即mx-2+x<0在m∈[-2,2]上恒成立.记g(m)=xm-2+x,13.已知双曲线的一条渐近线方程为,则该双曲线的离心率为________.参考答案:【分析】由双曲线渐近线方程得,从而可求,最后用离心率的公式,可算出该双曲线的离心率,即可求解.【详解】由题意,双曲线的一条渐近线方程为,所以,所以,所以.故答案为:.【点睛】本题主要考查了双曲线的渐近线方程,求双曲线的离心率,着重考查了双曲线的标准方程、基本概念和简单几何性质等知识,属于基础题.14.对于数列,若中最大值,则称数列为数列的“凸值数列”。如数列2,1,3,7,5的“凸值数列”为2,2,3,7,7;由此定义,下列说法正确的有___________________.①递减数列的“凸值数列”是常数列;②不存在数列,它的“凸值数列”还是本身;③任意数列的“凸值数列”是递增数列;④“凸值数列”为1,3,3,9的所有数列的个数为3.参考答案:①④15.设m是常数,若点F(0,5)是双曲线的一个焦点,则m=

.参考答案:16【考点】KC:双曲线的简单性质.【分析】根据双曲线的焦点坐标判断双曲线的焦点位置是解决本题的关键,利用双曲线标准方程中的分母与焦点非零坐标的关系,列出关于m的方程,通过解方程求出m的值.【解答】解:由于点F(0,5)是双曲线的一个焦点,故该双曲线的焦点在y轴上,从而m>0.从而得出m+9=25,解得m=16.故答案为:16.16.下面几种推理是演绎推理的是:

(1)两条直线平行,同旁内角互补,如果∠A与∠B是两条平行直线的同旁内角,则∠A+∠B=1800;(2)泰师附中高二(1)班有55人,(2)班有54人,(3)班有52人,由此得高二所有各班级人数超过50人;(3)由平面三角形的性质推出空间四面体的性质。参考答案:演绎推理选1

略17.下图为函数的图像,其在点M()处的切线为,与轴和直线分别交于点、,点,则面积以为自变量的函数解析式为

,若的面积为时的点M恰好有两个,则的取值范围为

。参考答案:

,(此小题每空2分)三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知点A(0,﹣2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆的焦点,直线AF的斜率为,O为坐标原点.(Ⅰ)求E的方程;(Ⅱ)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l的方程.参考答案:【考点】直线与圆锥曲线的关系;椭圆的简单性质.【分析】(Ⅰ)通过离心率得到a、c关系,通过A求出a,即可求E的方程;(Ⅱ)设直线l:y=kx﹣2,设P(x1,y1),Q(x2,y2)将y=kx﹣2代入,利用△>0,求出k的范围,利用弦长公式求出|PQ|,然后求出△OPQ的面积表达式,利用换元法以及基本不等式求出最值,然后求解直线方程.【解答】解:(Ⅰ)设F(c,0),由条件知,得?又,所以a=2?,b2=a2﹣c2=1,故E的方程.….(Ⅱ)依题意当l⊥x轴不合题意,故设直线l:y=kx﹣2,设P(x1,y1),Q(x2,y2)将y=kx﹣2代入,得(1+4k2)x2﹣16kx+12=0,当△=16(4k2﹣3)>0,即时,从而??6558764又点O到直线PQ的距离,所以△OPQ的面积=,设,则t>0,,当且仅当t=2,k=±等号成立,且满足△>0,所以当△OPQ的面积最大时,l的方程为:y=x﹣2或y=﹣x﹣2.…19.已知函数f(x)=(a、b为常数),且f(1)=,f(0)=0.(Ⅰ)求函数f(x)的解析式;(Ⅱ)判断函数f(x)在定义域上的奇偶性,并证明;(Ⅲ)对于任意的x∈[0,2],f(x)(2x+1)<m?4x恒成立,求实数m的取值范围.参考答案:考点:函数恒成立问题.专题:函数的性质及应用;不等式的解法及应用.分析:(Ⅰ)运用代入法,得到a,b的方程,解得a,b,可得f(x)的解析式;(Ⅱ)函数f(x)为奇函数.运用奇函数的定义,即可得证;(Ⅲ)f(x)(2x+1)<m?4x恒成立,即为2x﹣1<m?4x,运用参数分离和换元法,结合指数函数和二次函数的值域,可得右边的最大值,即可得到m的范围.解答: 解:(Ⅰ)由已知可得,,解得a=1,b=﹣1,所以;(Ⅱ)函数f(x)为奇函数.证明如下:f(x)的定义域为R,∵,∴函数f(x)为奇函数;

(Ⅲ)∵,∴,∴2x﹣1<m?4x∴=g(x),故对于任意的x∈[0,2],f(x)(2x+1)<m?4x恒成立等价于m>g(x)max令,则y=t﹣t2,则当时,故,即m的取值范围为.点评:本题主要考查函数的解析式、奇偶性等基础知识,考查运算求解能力、推理论证能力,抽象概括能力,考查化归的思想.20.已知圆的圆心为,且与轴相切.(1)求圆的标准方程;(2)若关于直线对称的两点均在圆上,且直线与圆相切,试求直线的方程.参考答案:解:(1)圆的标准方程为

-----------------3分(2)由已知得直线过圆心,所以

设直线的方程为,圆的圆心到直线的距离为,故有,解得,经检验,直线的方程为 -----------------8分

略21.(本小题满分14分)已知椭圆C的中心在坐标原点,焦点在x轴上,它的一个顶点恰好是抛物线(1)求椭圆C的标准方程;(2)过椭圆C的右焦点F作直线l交椭圆C于A、B两点,交y轴于M点,若求的值.参考答案:解:(Ⅰ)解:设椭圆C的方程

……1分抛物线方程化为x2=4y,其焦点为(0,1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论