版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,△ABC中,∠B=70°,则∠BAC=30°,将△ABC绕点C顺时针旋转得△EDC.当点B的对应点D恰好落在AC上时,∠CAE的度数是()A.30° B.40° C.50° D.60°2.在平面直角坐标系中,将抛物线y=2(x﹣1)2+1先向左平移2个单位,再向上平移3个单位,则平移后抛物线的表达式是()A.y=2(x+1)2+4 B.y=2(x﹣1)2+4C.y=2(x+2)2+4 D.y=2(x﹣3)2+43.国家实施“精准扶贫”政策以来,很多贫困人口走向了致富的道路.某地区2017年底有贫困人口25万人,通过社会各界的努力,2019年底贫困人口减少至9万人.设2017年底至2019年底该地区贫困人口的年平均下降率为x,根据题意可列方程()A.25(1﹣2x)=9 B.C.9(1+2x)=25 D.4.方程变为的形式,正确的是()A. B.C. D.5.根据圆规作图的痕迹,可用直尺成功找到三角形外心的是()A. B.C. D.6.如今网上购物已经成为一种时尚,某网店“双十一”全天交易额逐年增长,2015年交易额为40万元,2017年交易额为48.4万元,设2015年至2017年“双十一”交易额的年平均增长率为,则根据题意可列方程为()A. B.C. D.7.如图所示,⊙的半径为13,弦的长度是24,,垂足为,则A.5 B.7 C.9 D.118.如图所示,给出下列条件:①;②;③;④,其中单独能够判定的个数为()A. B. C. D.9.若一次函数的图像经过第一、二、四象限,则下列不等式中总是成立的是()A. B. C. D.10.在中,,若,则的值为()A. B. C. D.二、填空题(每小题3分,共24分)11.在直径为4cm的⊙O中,长度为的弦BC所对的圆周角的度数为____________.12.甲、乙两人在100米短跑训练中,某5次的平均成绩相等,甲的方差是0.12,乙的方差是0.05,这5次短跑训练成绩较稳定的是_____.(填“甲”或“乙”)13.张华在网上经营一家礼品店,春节期间准备推出四套礼品进行促销,其中礼品甲45元/套,礼品乙50元/套,礼品丙70元/套,礼品丁80元/套,如果顾客一次购买礼品的总价达到100元,顾客就少付x元,每笔订单顾客网上支付成功后,张华会得到支付款的80%.①当x=5时,顾客一次购买礼品甲和礼品丁各1套,需要支付_________元;②在促销活动中,为保证张华每笔订单得到的金额均不低于促销前总价的六折,则x的最大值为________.14.在平面直角坐标系中,点的坐标分别是,以点为位似中心,相们比为,把缩小,得到,则点的对应点的坐标为_____.15.“蜀南竹海位于宜宾市境内”是_______事件;(填“确定”或“随机”)16.如图,△ABC中,AE交BC于点D,∠C=∠E,AD=4,BC=8,BD:DC=5:3,则DE的长等于__________________.17.如图,在矩形中,,对角线与相交于点,,垂足为点,且平分,则的长为_____.18.已知点,都在反比例函数图象上,则____(填“”或“”或“”).三、解答题(共66分)19.(10分)现如今,“垃圾分类”意识已深入人心,垃圾一般可分为:可回收物、厨余垃圾、有害垃圾、其它垃圾.其中甲拿了一袋垃圾,乙拿了两袋垃圾.(1)直接写出甲所拿的垃圾恰好是“厨余垃圾”的概率;(2)求乙所拿的两袋垃圾不同类的概率.20.(6分)如图,正三角形ABC内接于⊙O,若AB=4cm,求⊙O的直径及正三角形ABC的面积.21.(6分)如图,在直角坐标系中,以点为圆心,以3为半径的圆,分别交轴正半轴于点,交轴正半轴于点,过点的直线交轴负半轴于点.(1)求两点的坐标;(2)求证:直线是⊙的切线.22.(8分)某商家在购进一款产品时,由于运输成本及产品成本的提高,该产品第天的成本(元/件)与(天)之间的关系如图所示,并连续50天均以80元/件的价格出售,第天该产品的销售量(件)与(天)满足关系式.(1)第40天,该商家获得的利润是______元;(2)设第天该商家出售该产品的利润为元.①求与之间的函数关系式,并指出第几天的利润最大,最大利润是多少?②在出售该产品的过程中,当天利润不低于1000元的共有多少天?23.(8分)在等腰直角三角形中,,,点在斜边上(),作,且,连接,如图(1).(1)求证:;(2)延长至点,使得,与交于点.如图(2).①求证:;②求证:.24.(8分)游乐园新建的一种新型水上滑道如图,其中线段表示距离水面(x轴)高度为5m的平台(点P在y轴上).滑道可以看作反比例函数图象的一部分,滑道可以看作是二次函数图象的一部分,两滑道的连接点B为二次函数的顶点,且点B到水面的距离,点B到y轴的距离是5m.当小明从上而下滑到点C时,与水面的距离,与点B的水平距离.(1)求反比例函数的关系式及其自变量的取值范围;(2)求整条滑道的水平距离;(3)若小明站在平台上相距y轴的点M处,用水枪朝正前方向下“扫射”,水枪出水口N距离平台,喷出的水流成抛物线形,设这条抛物线的二次项系数为p,若水流最终落在滑道上(包括B、D两点),直接写出p的取值范围.25.(10分)小红想利用阳光下的影长测量学校旗杆AB的高度.如图,她在地面上竖直立一根2米长的标杆CD,某一时刻测得其影长DE=1.2米,此时旗杆AB在阳光下的投影BF=4.8米,AB⊥BD,CD⊥BD.请你根据相关信息,求旗杆AB的高.26.(10分)如图,在△ABC中,AB=AC,M为BC的中点,MH⊥AC,垂足为H.(1)求证:;(2)若AB=AC=10,BC=1.求CH的长.
参考答案一、选择题(每小题3分,共30分)1、C【解析】由三角形内角和定理可得∠ACB=80°,由旋转的性质可得AC=CE,∠ACE=∠ACB=80°,由等腰的性质可得∠CAE=∠AEC=50°.【详解】∵∠B=70°,∠BAC=30°∴∠ACB=80°∵将△ABC绕点C顺时针旋转得△EDC.∴AC=CE,∠ACE=∠ACB=80°∴∠CAE=∠AEC=50°故选C.【点睛】本题考查了旋转的性质,等腰三角形的性质,熟练运用旋转的性质是本题的关键.2、A【分析】只需确定原抛物线解析式的顶点坐标平移后的对应点坐标即可.【详解】解:原抛物线y=2(x﹣1)2+1的顶点为(1,1),先向左平移2个单位,再向上平移3个单位,新顶点为(﹣1,4).即所得抛物线的顶点坐标是(﹣1,4).所以,平移后抛物线的表达式是y=2(x+1)2+4,故选:A.【点睛】本题主要考查了二次函数图像的平移,抛物线的解析式为顶点式时,求出顶点平移后的对应点坐标,可得平移后抛物线的解析式,熟练掌握二次函数图像的平移规律是解题的关键.3、B【分析】根据2017年贫困人口数×(1-平均下降率为)2=2019年贫困人口数列方程即可.【详解】设年平均下降率为x,∵2017年底有贫困人口25万人,2019年底贫困人口减少至9万人,∴25(1-x)2=9,故选:B.【点睛】本题考查由实际问题抽象出一元二次方程,即一元二次方程解答有关平均增长率问题.对于平均增长率问题,在理解的基础上,可归结为a(1+x)2=b(a<b);平均降低率问题,在理解的基础上,可归结为a(1-x)2=b(a>b).4、B【分析】方程常数项移到右边,两边加上1变形即可得到结果.【详解】方程移项得:x2﹣2x=3,配方得:x2﹣2x+1=1,即(x﹣1)2=1.故选B.【点睛】本题考查了解一元二次方程﹣配方法,熟练掌握配方法的步骤是解答本题的关键.5、C【分析】根据三角形外心的定义得到三角形外心为三边的垂直平分线的交点,然后利用基本作图对各选项进行判断.【详解】三角形外心为三边的垂直平分线的交点,由基本作图得到C选项作了两边的垂直平分线,从而可用直尺成功找到三角形外心.故选C.【点睛】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了三角形的外心.6、C【分析】由2015年至2017年“双十一”交易额的年平均增长率为x,根据2015年及2017年该网店“双十一”全天交易额,即可得出关于x的一元二次方程,从而得出结论.【详解】解:由2015年至2017年“双十一”交易额的年平均增长率为x,根据题意得:.故选C.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列一元二次方程是解题的关键.7、A【详解】试题分析:已知⊙O的半径为13,弦AB的长度是24,,垂足为N,由垂径定理可得AN=BN=12,再由勾股定理可得ON=5,故答案选A.考点:垂径定理;勾股定理.8、B【解析】由已知△ABC与△ABD中∠A为公共角,所以只要再找一组角相等,或一组对应边成比例即可解答.【详解】解::①∵,∠A为公共角,∴;②∵,∠A为公共角,∴;③虽然,但∠A不是已知的比例线段的夹角,所以两个三角形不相似;④∵,∴,又∵∠A为公共角,∴.综上,单独能够判定的个数有3个,故选B.【点睛】本题考查了相似三角形的判定,属于基础题目,熟练掌握相似三角形的判定方法是解题的关键.9、C【分析】首先判断a、b的符号,再一一判断即可解决问题.【详解】∵一次函数y=ax+b的图象经过第一、二、四象限,∴a<0,b>0,故A错误;,故B错误;a2+b>0,故C正确,a+b不一定大于0,故D错误.故选:C.【点睛】本题考查一次函数与不等式,解题的关键是学会根据函数图象的位置,确定a、b的符号,属于中考常考题型.10、C【分析】根据特殊角的三角函数值求出∠B,再求∠A,即可求解.【详解】在中,,若,则∠B=30°故∠A=60°,所以sinA=故选:C【点睛】本题考查的是三角函数,掌握特殊角的三角函数值是关键.二、填空题(每小题3分,共24分)11、60°或120°【分析】如下图所示,分两种情况考虑:D点在优弧CDB上或E点在劣弧BC上时,根据三角函数可求出∠OCF的大小,进而求出∠BOC的大小,再由圆周角定理可求出∠D、∠E大小,进而得到弦BC所对的圆周角.【详解】解:分两种情况考虑:D在优弧CDB上或E在劣弧BC上时,可得弦BC所对的圆周角为∠D或∠E,如下图所示,作OF⊥BC,由垂径定理可知,F为BC的中点,∴CF=BF=BC=,又直径为4cm,∴OC=2cm,在Rt△AOC中,cos∠OCF=,∴∠OCF=30°,∵OC=OB,∴∠OCF=∠OBF=30°,∴∠COB=120°,∴∠D=∠COB=60°,又圆内接四边形的对角互补,∴∠E=120°,则弦BC所对的圆周角为60°或120°.故答案为:60°或120°.【点睛】此题考查了圆周角定理,圆内接四边形的性质,锐角三角函数定义,以及特殊角的三角函数值,熟练掌握圆周角定理是解本题的关键.12、乙【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵甲的方差为0.14,乙的方差为0.06,∴S甲2>S乙2,∴成绩较为稳定的是乙;故答案为:乙.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.13、125【分析】①当x=5时,顾客一次购买礼品甲和礼品丁各1套,需要支付45+80-5=1元.②设顾客每笔订单的总价为M元,当0<M<100时,张军每笔订单得到的金额不低于促销前总价的六折,当M≥100时,0.8(M-x)≥0.6M,对M≥100恒成立,由此能求出x的最大值.【详解】解:(1)当x=5时,顾客一次购买礼品甲和礼品丁各1套,需要支付:45+80-5=1元.故答案为:1.(2)设顾客一次购买干果的总价为M元,当0<M<100时,张军每笔订单得到的金额不低于促销前总价的六折,当M≥100时,0.8(M-x)≥0.6M,解得,0.8x≤0.2M.∵M≥100恒成立,∴0.8x≤200解得:x≤25.故答案为25.【点睛】本题考查代数值的求法,考查函数性质在生产、生活中的实际应用等基础知识,考查运算求解能力和应用意识,是中档题.14、或【解析】利用位似图形的性质可得对应点坐标乘以和-即可求解.【详解】解:以点为位似中心,相似比为,把缩小,点的坐标是则点的对应点的坐标为或,即或,故答案为:或.【点睛】本题考查的是位似图形,熟练掌握位似变换是解题的关键.15、确定【分析】根据“确定定义”或“随机定义”即可解答.【详解】“蜀南竹海是国家AAAA级旅游胜地,位于宜宾市境内”,所以是确定事件.故答案为:确定.【点睛】本题考查必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,确定事件包括必然事件、不可能事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,.16、【解析】试题分析:∵∠ADC=∠BDE,∠C=∠E,∴△ADC∽△BDE,∴,∵AD=4,BC=8,BD:DC=5:3,∴BD=5,DC=3,∴DE=.故选B.考点:相似三角形的判定与性质.17、.【分析】由矩形的性质可得AO=CO=BO=DO,可证△ABE≌△AOE,可得AO=AB=BO=DO,由勾股定理可求AB的长.【详解】解:∵四边形是矩形∴,∵平分∴,且,,∴≌()∴,且∴,∴,∵,∴,∴故答案为.【点睛】本题考查了矩形的性质,全等三角形的判定和性质,勾股定理,熟练运用矩形的性质是本题的关键.18、【分析】先判断,则图像经过第一、三象限,根据反比例函数的性质,即可得到答案.【详解】解:∵,∴反比例函数的图象在第一、三象限,且在每个象限内y随x增大而减小,∵,∴,故答案为:.【点睛】本题考查了反比例函数的图象和性质,解题的关键是掌握时,反比例函数经过第一、三象限,且在每个象限内y随x增大而减小.三、解答题(共66分)19、(1);(2).【分析】(1)共四种垃圾,厨余垃圾一种,所以甲拿了一袋垃圾恰好厨余垃圾的概率为:;(2)直接画出树状图,利用树状图解题即可【详解】解:(1)记可回收物、厨余垃圾、有害垃圾、其它垃圾分别为A,B,C,D,∵垃圾要按A,B,C、D类分别装袋,甲拿了一袋垃圾,∴甲拿的垃圾恰好是B类:厨余垃圾的概率为:;(2)画树状图如下:由树状图知,乙拿的垃圾共有16种等可能结果,其中乙拿的两袋垃圾不同类的有12种结果,所以乙拿的两袋垃圾不同类的概率为【点睛】本题考查概率的计算以及树状图算概率,掌握树状图法是解题关键20、⊙O的直径为8cm,正三角形ABC的面积为12cm2【分析】根据圆内接正三角形的性质即可求解.【详解】解:如图所示:连接CO并延长与AB交于点D,连接AO,∵点O是正三角形ABC的外心,∴CD⊥AB,∠OAD=30°,设OD=x,则,根据勾股定理,得,解得x=4,则x=2,∴半径OA=4cm,直径为8cm.∴CD=3x=6,∴.答:⊙O的直径为8cm;正三角形ABC的面积为12cm2【点睛】本题考查了三角形的外接圆与外心、等边三角形的性质,解决本题的关键是掌握圆内接正三角形的性质.21、(1),;(2)详见解析.【分析】(1)先根据圆的半径可求出CA的长,再结合点C坐标即可得出点A坐标;根据点C坐标可知OC的长,又根据圆的半径可求出CB的长,然后利用勾股定理可求出OB的长,即可得出点B坐标;(2)先根据点坐标分别求出,再根据勾股定理的逆定理可得是直角三角形,然后根据圆的切线的判定定理即可得证.【详解】(1)∵,圆的半径为3∴,∴点A是x轴正半轴与圆的交点∴如图,连接CB,则在中,点B是y轴正半轴与圆的交点∴;(2)∵∴在中,则在中,是直角三角形,即又∵BC是⊙C半径∴直线BD是⊙C的切线.【点睛】本题是一道较简单的综合题,考查了圆的基本性质、勾股定理、圆的切线的判定定理等知识点,熟记各定理与性质是解题关键.22、(1)1000(2)①,25,1225;②1.【分析】(1)根据图象可求出BC的解析式,即可求出第40天时的成本为60元,此时的产量为z=40+10=50,则可求得第40天的利润;(2)利用每件利润×总销量=总利润,进而求出二次函数最值即可.【详解】(1)根据图象得,B(20,40),C(50,70),设BC的解析式为y=kx+b,把B(20,40),C(50,70)代入得,,解得,,所以,直线BC的解析式为:y=x+20,当x=40时,y=60,即第40天时该产品的成本是60元/件,利润为:80-60=20(元/件)此时的产量为z=40+10=50件,则第40天的利润为:20×50=1000元故答案为:1000(2)①当时,,∴时,元;当时,,∴时,元;综上所述,当时,元②当时,若元,则(天),第15天至第20天的利润都不低于1000元;当时,若元,则(舍去)(天),所以第21天至第40天的利润都不低于1000元,则总共有1天的利润不低于1000元.【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.根据每天的利润=一件的利润×销售件数,建立函数关系式,此题为数学建模题,借助二次函数解决实际问题.23、(1)见解析;(1)①见解析;②见解析【分析】(1)依据AC=BC,可得∠CAB=∠B=45°,依据AQ⊥AB,可得∠QAC=∠CAB=45°=∠B,即可得到△ACQ≌△BCP;(1)①依据△ACQ≌△BCP,则∠QCA=∠PCB,依据∠RCP=45°,即可得出∠QCR=45°=∠QAC,根据∠Q为公共角,可得△CQR∽△AQC,即可得到CQ1=QA•QR;②判定△QCH≌△PCH(SAS),即可得到HQ=HP,在Rt△QAH中,QA1+AH1=HQ1,依据QA=PB,即可得到AH1+PB1=HP1.【详解】(1)∵AC=BC,∴∠CAB=∠B=45°,又∵AQ⊥AB,∴∠QAC=∠CAB=45°=∠B,在△ACQ和△BCP中,,∴△ACQ≌△BCP
(SAS);(1)①由(1)知△ACQ≌△BCP,则∠QCA=∠PCB,∵∠RCP=45°,∴∠ACR+∠PCB=45°,∴∠ACR+∠QCA=45°,即∠QCR=45°=∠QAC,又∠Q为公共角,∴△CQR∽△AQC,∴,∴CQ1=QA•QR
;②如图,连接QH,由(1)(1)题知:∠QCH=∠PCH=45°,CQ=CP.又∵CH
是△QCH和△PCH的公共边,∴△QCH≌△PCH(SAS).∴HQ=HP,∵在Rt△QAH中,QA1+AH1=HQ1,又由(1)知:QA=PB,∴.【点睛】本题属于相似形综合题,主要考查了等腰三角形、全等三角形、直角三角形、勾股定理以及相似三角形的综合运用.解决问题的关键是作辅助线构造全等三角形,利用全等三角形对应边相等以及相似三角形的对应边成比例得出结论.24、(1),;(2)7m;(3).【分析】(1)在题中,BE=2,B到y轴的距离是5,即反比例函数图象上一点的横坐标和纵坐标都已告知,则可求出比例系数k;(2)根据B,C的坐标求出二次函数解析式,得到点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年广东省深圳市南山区中考英语三模试卷
- 2 哪些领域对闪电定位仪的需求比较大
- 浙江省台州市台州十校联考2024-2025学年高一上学期期中考试生物试题含答案
- 人教版二年级上册美术教案
- 第三单元《珍爱我们的生命》-2024-2025学年七年级道德与法治上册单元测试卷(统编版2024新教材)
- 广东省珠海市第九中学2024-2025学年九年级上学期11月期中化学试题(含答案)
- 职业学院船舶工程技术专业人才培养方案
- 便携式遥控阻车器产业深度调研及未来发展现状趋势
- 手表自动上弦器产品供应链分析
- 医用人体成分分析仪产业运行及前景预测报告
- 台湾民主自治同盟
- 《中成药的应用》课件
- 设备包机到人管理制度
- 初中英语-现在进行时 过去进行时(含练习)
- 中小学校财务管理案例分析
- 《我们小点儿声》评课报告
- C25喷射混凝土配合比设计与使用
- 企业经营模拟实训知到章节答案智慧树2023年华南农业大学
- (完整版)全国各省份城市明细表
- 胆总管囊肿护理查房
- 《Matlab语言与及其应用》实验报告
评论
0/150
提交评论