2023届河南省南阳宛城区四校联考九年级数学第一学期期末综合测试模拟试题含解析_第1页
2023届河南省南阳宛城区四校联考九年级数学第一学期期末综合测试模拟试题含解析_第2页
2023届河南省南阳宛城区四校联考九年级数学第一学期期末综合测试模拟试题含解析_第3页
2023届河南省南阳宛城区四校联考九年级数学第一学期期末综合测试模拟试题含解析_第4页
2023届河南省南阳宛城区四校联考九年级数学第一学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,在△ABC中,DE∥BC,DE分别交AB,AC于点D,E,若AD:DB=1:2,则△ADE与△ABC的面积之比是()A.1:3 B.1:4 C.1:9 D.1:162.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知,则球的半径长是()A.2 B.2.5 C.3 D.43.若点在反比例函数上,则的值是()A. B. C. D.4.分别以等边三角形的三个顶点为圆心,以边长为半径画弧,得到封闭图形就是莱洛三角形,如图,已知等边,,则该莱洛三角形的面积为()A. B. C. D.5.如图,是矩形内的任意一点,连接、、、,得到,,,,设它们的面积分别是,,,,给出如下结论:①②③若,则④若,则点在矩形的对角线上.其中正确的结论的序号是()A.①② B.②③ C.③④ D.②④6.如图,有一斜坡AB,坡顶B离地面的高度BC为30m,斜坡的倾斜角是∠BAC,若,则此斜坡的水平距离AC为()A.75m B.50m C.30m D.12m7.已知二次函数y=kx2-7x-7的图象与x轴没有交点,则k的取值范围为()A.k> B.k≥且k≠0 C.k< D.k>且k≠08.如图,△ABC的顶点在网格的格点上,则tanA的值为()A. B. C. D.9.如图,AB为⊙O的直径,点C,D在⊙O上.若∠AOD=30°,则∠BCD等于()A.75° B.95° C.100° D.105°10.点A(1,y1)、B(3,y2)是反比例函数y=图象上的两点,则y1、y2的大小关系是()A.y1>y2 B.y1=y2 C.y1<y2 D.不能确定二、填空题(每小题3分,共24分)11.若整数使关于的二次函数的图象在轴的下方,且使关于的分式方程有负整数解,则所有满足条件的整数的和为__________.12.如图,△ABC中,AB=AC=5,BC=6,AD⊥BC,E、F分别为AC、AD上两动点,连接CF、EF,则CF+EF的最小值为_____.13.一次函数与反比例函数()的图象如图所示,当时,自变量的取值范围是__________.14.如图,矩形中,,,以为圆心,为半径画弧,交于点,则图中阴影部分的面积是_______.15.在Rt△ABC中,∠C=90°,如果AC=9,cosA=,那么AB=________.16.如图一次函数的图象分别交x轴、y轴于A、B,P为AB上一点且PC为△AOB的中位线,PC的延长线交反比例函数的图象于Q,,则Q点的坐标为_____________17.某居民小区为了解小区500户居民家庭平均月使用塑料袋的数量情况,随机调查了10户居民家庭月使用塑料袋的数量,结果如下(单位:只):65,70,85,74,86,78,74,92,82,1.根据统计情况,估计该小区这500户家庭每月一共使用塑料袋_________只.18.如图,△ABC的外心的坐标是____.三、解答题(共66分)19.(10分)如图,在网格纸中,、都是格点,以为圆心,为半径作圆,用无刻度的直尺完成以下画图:(不写画法)(1)在圆①中画圆的一个内接正六边形;(2)在图②中画圆的一个内接正八边形.20.(6分)如图,在A港口的正东方向有一港口B.某巡逻艇从A港口沿着北偏东60°方向巡逻,到达C处时接到命令,立刻在C处沿东南方向以20海里/小时的速度行驶2小时到达港口B.求A,B两港之间的距离(结果保留根号).21.(6分)在平面直角坐标系xOy中,抛物线y=x2+bx+c交x轴于A(﹣1,0),B(3,0)两点,交y轴于点C.(1)如图1,求抛物线的解析式;(2)如图2,点P是第一象限抛物线上的一个动点,连接CP交x轴于点E,过点P作PK∥x轴交抛物线于点K,交y轴于点N,连接AN、EN、AC,设点P的横坐标为t,四边形ACEN的面积为S,求S与t之间的函数关系式(不要求写出自变量t的取值范围);(3)如图3,在(2)的条件下,点F是PC中点,过点K作PC的垂线与过点F平行于x轴的直线交于点H,KH=CP,点Q为第一象限内直线KP下方抛物线上一点,连接KQ交y轴于点G,点M是KP上一点,连接MF、KF,若∠MFK=∠PKQ,MP=AE+GN,求点Q坐标.22.(8分)用一段长为30m的篱笆围成一个边靠墙的矩形菜园,墙长为18m(1)若围成的面积为72m2,球矩形的长与宽;(2)菜园的面积能否为120m2,为什么?23.(8分)实行垃圾分类和垃圾资源化利用,关系广大人民群众生活环境,关系节约使用资源,也是社会文明水平的一个重要体现.某环保公司研发了甲、乙两种智能设备,可利用最新技术将干垃圾进行分选破碎制成固化成型燃料棒,干垃圾由此变身新型清洁燃料.某垃圾处理厂从环保公司购入以上两种智能设备若干,已知购买甲型智能设备花费万元,购买乙型智能设备花费万元,购买的两种设备数量相同,且两种智能设备的单价和为万元.求甲、乙两种智能设备单价;垃圾处理厂利用智能设备生产燃料棒,并将产品出售.已知燃料棒的成本由人力成本和物资成本两部分组成,其中物资成本占总成本的,且生产每吨燃料棒所需人力成本比物资成本的倍还多元.调查发现,若燃料棒售价为每吨元,平均每天可售出吨,而当销售价每降低元,平均每天可多售出吨.垃圾处理厂想使这种燃料棒的销售利润平均每天达到元,且保证售价在每吨元基础上降价幅度不超过,求每吨燃料棒售价应为多少元?24.(8分)某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价x(元/千克)的函数关系如下图所示:(1)求y与x的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润的最大值.25.(10分)网络比网络的传输速度快10倍以上,因此人们对产品充满期待.华为集团计划2020年元月开始销售一款产品.根据市场营销部的规划,该产品的销售价格将随销售月份的变化而变化.若该产品第个月(为正整数)销售价格为元/台,与满足如图所示的一次函数关系:且第个月的销售数量(万台)与的关系为.(1)该产品第6个月每台销售价格为______元;(2)求该产品第几个月的销售额最大?该月的销售价格是多少元/台?(3)若华为董事会要求销售该产品的月销售额不低于27500万元,则预计销售部符合销售要求的是哪几个月?(4)若每销售1万台该产品需要在销售额中扣除元推广费用,当时销售利润最大值为22500万元时,求的值.26.(10分)如图1,若二次函数的图像与轴交于点(-1,0)、,与轴交于点(0,4),连接、,且抛物线的对称轴为直线.(1)求二次函数的解析式;(2)若点是抛物线在一象限内上方一动点,且点在对称轴的右侧,连接、,是否存在点,使?若存在,求出点的坐标;若不存在,说明理由;(3)如图2,若点是抛物线上一动点,且满足,请直接写出点坐标.

参考答案一、选择题(每小题3分,共30分)1、C【分析】根据DE∥BC,即可证得△ADE∽△ABC,然后根据相似三角形的面积的比等于相似比的平方,即可求解.【详解】解:∵AD:DB=1:2,∴AD:AB=1:3,∵DE∥BC,∴△ADE∽△ABC,∴=()2=.故选:C.【点睛】此题主要考查相似三角形的性质,解题的关键是熟知相似三角形的面积的比等于相似比的平方.2、B【解析】取EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,设OF=x,则OM=4-x,MF=2,然后在Rt△MOF中利用勾股定理求得OF的长即可.【详解】如图:EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDMN是矩形,∴MN=CD=4,设OF=x,则ON=OF,∴OM=MN-ON=4-x,MF=2,在直角三角形OMF中,OM2+MF2=OF2,即:(4-x)2+22=x2,解得:x=2.5,故选B.【点睛】本题主考查垂径定理及勾股定理的知识,正确作出辅助线构造直角三角形是解题的关键.3、C【分析】将点(-2,-6)代入,即可计算出k的值.【详解】∵点(-2,-6)在反比例函数上,∴k=(-2)×(-6)=12,故选:C.【点睛】本题考查了待定系数法求反比例函数解析式,明确函数图象上点的坐标符合函数解析式是解题关键.4、D【分析】莱洛三角形的面积为三个扇形的面积相加,再减去两个等边三角形的面积,代入已知数据计算即可.【详解】解:如图所示,作AD⊥BC交BC于点D,∵△ABC是等边三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°∵AD⊥BC,∴BD=CD=1,AD=,∴,∴莱洛三角形的面积为故答案为D.【点睛】本题考查了不规则图形的面积的求解,能够得出“莱洛三角形的面积为三个扇形的面积相加,再减去两个等边三角形的面积”是解题的关键.5、D【分析】根据三角形面积公式、矩形性质及相似多边形的性质得出:①矩形对角线平分矩形,S△ABD=S△BCD,只有P点在BD上时,S₁+S₂=S₃+S4;②根据底边相等的两个三角形的面积公式求和可知,S₁+S₃=矩形ABCD面积,同理S₂+S4=矩形ABCD面积,所以S₁+S₃=S₂+S4;③根据底边相等高不相等的三角形面积比等于高的比来说明即可;④根据相似四边形判定和性质,对应角相等、对应边成比例的四边形相似,矩形AEPF∽矩形ABCD推出,点P在对角线上.【详解】解:①当点P在矩形的对角线BD上时,S₁+S₂=S₃+S4.但P是矩形ABCD内的任意一点,所以该等式不一定成立。故①不一定正确;②∵矩形∴AB=CD,AD=BC∵△APD以AD为底边,△PBC以BC为底边,这两三角形的底相等,高的和为AB,∴S₁+S₃=S矩形ABCD;同理可得S₂+S4=S矩形ABCD,∴②S₂+S4=S₁+S₃正确;③若S₃=2S₁,只能得出△APD与△PBC高度之比是,S₂、S4分别是以AB、CD为底的三角形的面积,底相等,高的比不一定等于,S4=2S2不一定正确;故此选项错误;④过点P分别作PF⊥AD于点F,PE⊥AB于点E,F.若S1=S2,.则AD·PF=AB·PE∴△APD与△PAB的高的比为:∵∠DAE=∠PEA=∠PFA=90°∴四边形AEPF是矩形,∴矩形AEPF∽矩形ABCD∴∴P点在矩形的对角线上,选项④正确.故选:D【点睛】本题考查了三角形面积公式的应用,相似多边形的判定和性质,用相似多边形性质对应边成比例是解决本题的难点.6、A【分析】根据BC的长度和的值计算出AC的长度即可解答.【详解】解:因为,又BC=30,所以,,解得:AC=75m,所以,故选A.【点睛】本题考查了正切三角函数,熟练掌握是解题的关键.7、C【分析】根据二次函数图像与x轴没有交点说明,建立一个关于k的不等式,解不等式即可.【详解】∵二次函数的图象与x轴无交点,∴即解得故选C.【点睛】本题主要考查一元二次方程根的判别式和二次函数图像与x轴交点个数的关系,掌握根的判别式是解题的关键.8、A【分析】根据勾股定理,可得BD、AD的长,根据正切为对边比邻边,可得答案.【详解】解:如图作CD⊥AB于D,CD=,AD=2,tanA=,故选A.【点睛】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.9、D【解析】试题解析:连接故选D.点睛:圆内接四边形的对角互补.10、A【解析】∵反比例函数y=中的9>0,∴经过第一、三象限,且在每一象限内y随x的增大而减小,又∵A(1,y₁)、B(3,y₂)都位于第一象限,且1<3,∴y₁>y₂,故选A.二、填空题(每小题3分,共24分)11、【分析】根据二次函数的图象在轴的下方得出,,解分式方程得,注意,根据分式方程有负整数解求出a,最后结合a的取值范围进行求解.【详解】∵二次函数的图象在轴的下方,∴,,解得,,,解得,,∵分式方程有负整数解,∴,即,∵,∴,∴所有满足条件的整数的和为,故答案为:.【点睛】本题考查二次函数的图象,解分式方程,分式方程的整数解,二次函数的图象在x轴下方,则开口向下且函数的最大值小于1,解分式方程时注意分母不为1.12、【分析】作BM⊥AC于M,交AD于F,根据三线合一定理求出BD的长和AD⊥BC,根据三角形面积公式求出BM,根据对称性质求出BF=CF,根据垂线段最短得出CF+EF≥BM,即可得出答案.【详解】作BM⊥AC于M,交AD于F,∵AB=AC=5,BC=6,AD是BC边上的中线,∴BD=DC=3,AD⊥BC,AD平分∠BAC,∴B、C关于AD对称,∴BF=CF,根据垂线段最短得出:CF+EF=BF+EF≥BF+FM=BM,即CF+EF≥BM,∵S△ABC=×BC×AD=×AC×BM,∴BM=,即CF+EF的最小值是,故答案为:.【点睛】本题考查了轴对称−最短路线问题,关键是画出符合条件的图形,题目具有一定的代表性,是一道比较好的题目.13、或【分析】即直线位于双曲线下方部分,根据图象即可得到答案.【详解】解:即直线位于双曲线下方部分,根据图象可知此时或.【点睛】本题考查了一次函数和反比例函数的图象和性质,用图解法解不等式.14、【分析】阴影面积=矩形面积-三角形面积-扇形面积.【详解】作EFBC于F,如图所示:在Rt中,∴=2,∴,在Rt中,,∴,==故答案是:.【点睛】本题主要是利用扇形面积和三角形面积公式计算阴影部分的面积,解题关键是找到所求的量的等量关系.15、27【解析】试题解析:解得:故答案为16、(2,)【解析】因为三角形OQC的面积是Q点的横纵坐标乘积的一半,所以可求出k的值,PC为中位线,可求出C的横坐标,也是Q的横坐标,代入反比例函数可求出纵坐标【详解】解:设A点的坐标为(a,0),B点坐标为(0,b),

分别代入,解方程得a=4,b=-2,

∴A(4,0),B(0,-2)∵PC是△AOB的中位线,

∴PC⊥x轴,即QC⊥OC,

又Q在反比例函数的图象上,

∴2S△OQC=k,

∴k=2×=3,

∵PC是△AOB的中位线,

∴C(2,0),

可设Q(2,q)∵Q在反比例函数的图象上,

∴q=,

∴点Q的坐标为(2

).点睛:本题考查反比例函数的综合运用,关键是知道函数上面取点后所得的三角函数的面积和点的坐标之间的关系.17、2【分析】先求出10户居民平均月使用塑料袋的数量,然后估计500户家庭每月一共使用塑料袋的数量即可.【详解】解:10户居民平均月使用塑料袋的数量为:(65+70+85+74+86+78+74+92+82+1)÷10=80,∴500×80=2(只),故答案为2.【点睛】本题考查统计思想,用样本平均数估计总体平均数,10户居民平均月使用塑料袋的数量是解答本题的关键.18、【解析】试题解析:∵△ABC的外心即是三角形三边垂直平分线的交点,∴作图得:∴EF与MN的交点O′即为所求的△ABC的外心,∴△ABC的外心坐标是(﹣2,﹣1).三、解答题(共66分)19、(1)见解析;(2)见解析【分析】(1)设AO的延长线与圆交于点D,根据正六边形的性质,点D即为正六边形的一个顶点,且正六边形的边长等于圆的半径,根据垂直平分线的性质即可确定其它的顶点;(2)先求出内接八边形的中心角,然后根据正方形的性质即可找到各个顶点.【详解】(1)设AO的延长线与圆交于点D,根据圆的内接正六边形的性质,点D即为正六边形的一个顶点,且正六边形的边长等于圆的半径,即OB=AB,故在图中找到AO的中垂线与圆的交点即为正六边形的顶点B和F;同理:在图中找到OD的中垂线与圆的交点即为正六边形的顶点C和E,连接AB、BC、CD、DE、EF、FA,如图①,正六边形即为所求.(2)圆的内接八边形的中心角为360°÷8=45°,而正方形的对角线与边的夹角也为45°∴在如②图所示的正方形OMNP中,连接对角线ON并延长,交圆于点B,此时∠AON=45°;∵∠NOP=45°,∴OP的延长线与圆的交点即为点C同理,即可确定点D、E、F、G、H的位置,顺次连接,如图②,正八边形即为所求.【点睛】此题考查的是画圆的内接正六边形和内接正八边形,掌握圆的内接正六边形和内接正八边形的性质和中心角的求法是解决此题的关键.20、A,B间的距离为(20+20)海里.【分析】过点C作CD⊥AB于点D,根据题意可得,∠ACD=60°,∠BCD=45°,BC=20×2=40,然后根据锐角三角函数即可求出A,B间的距离.【详解】解:如图,过点C作CD⊥AB于点D,根据题意可知:∠ACD=60°,∠BCD=45°,BC=20×2=40,∴在Rt△BCD中,CD=BD=BC=20,在Rt△ACD中,AD=CD•tan60°=20,∴AB=AD+BD=20+20(海里).答:A,B间的距离为(20+20)海里.【点睛】本题考查了解直角三角形的应用-方向角问题,解题的关键是掌握方向角的定义.21、(1)y=x2﹣2x﹣3;(2)S=t2+t;(3)Q(,).【分析】(1)函数的表达式为:y=(x+1)(x﹣3),即可求解;(2)tan∠PCH===,求出OE=,利用S=S△NCE+S△NAC,即可求解;(3)证明△CNP≌△KRH,求出点P(4,5)确定tan∠QKP===4﹣m=tan∠QPK==NG,最后计算KT=MT=(),FT=4﹣(+),tan∠MFT==4﹣m,即可求解.【详解】(1)函数的表达式为:y=(x+1)(x﹣3)=x2﹣2x﹣3;(2)过点P作PH⊥y轴交于点H,设点P(t,t2﹣2t﹣3),CN=t2﹣2t﹣3+3=t2﹣2t,∴tan∠PCH===,,解得:OE=,S=S△NCE+S△NAC=AE×CN=t2+t;(3)过点K作KR⊥FH于点R,∵KH=CP,∠NCP=∠H,∠R=∠PNC=90°,∴△CNP≌△KRH,∴PN=KR=NS,∵点F是PC中点,SF∥NP,∴PN=KR=NS=CN,即t=(t2﹣2t﹣3+3),解得:t=0或4(舍去0),点P(4,5),点K、P时关于对称轴的对称点,故点K(﹣2,5),∵OE∥PN,则,故OE=,同理AE=,设点Q(m,m2﹣2m﹣3),过点Q作WQ⊥KP于点W,WQ=5﹣(m2﹣2m﹣3)=﹣m2+2m+8,WK=m+2,tan∠QKP===4﹣m=tan∠QPK==NG,则NG=8﹣2m,MP=AE+GN=(8﹣2m)=﹣m+,KM=KP﹣MP=,过点F作FL⊥KP于点L,点F(2,1),则FL=LK=4,则∠LKF=45°,∵∠MFK=∠PKQ,tan∠MFK=tan∠QKP=4﹣m,过点M作MT⊥FK于点T,则KT=MT=(),FT=4﹣(),tan∠MFT==4﹣m,解得:m=11或(舍去11),故点Q(,).【点睛】考查了二次函数综合运用,涉及到一次函数、三角形全等、图形的面积计算、解直角三角形等,其中(3),运用函数的观点,求解点的坐标.22、(1)矩形的长为12米,宽为6米;(2)面积不能为120平方米,理由见解析【分析】(1)设垂直于墙的一边长为x米,则矩形的另一边长为(30﹣2x)米,根据面积为72米2列出方程,求解即可;(2)根据题意列出方程,用根的判别式判断方程根的情况即可.【详解】解:(1)设垂直于墙的一边长为x米,则x(30﹣2x)=72,解方程得:x1=3,x2=12.当x=3时,长=30﹣2×3=24>18,故舍去,所以x=12.答:矩形的长为12米,宽为6米;(2)假设面积可以为120平方米,则x(30﹣2x)=120,整理得即x2﹣15x+60=0,△=b2﹣4ac=152﹣4×60=﹣15<0,方程无实数解,故面积不能为120平方米.【点睛】此题主要考查一元二次方程的应用,解题的关键是根据题意列出方程求解.23、(1)甲设备万元每台,乙设备万元每台.(2)每吨燃料棒售价应为元.【分析】(1)设甲单价为万元,则乙单价为万元,再根据购买甲型智能设备花费万元,购买乙型智能设备花费万元,购买的两种设备数量相同列出分式方程并解答即可;(2)先求出每吨燃料棒成本为元,然后根据题意列出一元二次方程解答即可.【详解】解:设甲单价为万元,则乙单价为万元,则:解得经检验,是所列方程的根.答:甲设备万元每台,乙设备万元每台.设每吨燃料棒成本为元,则其物资成本为,则:,解得设每吨燃料棒在元基础上降价元,则解得.每吨燃料棒售价应为元.【点睛】本题考查分式方程和一元二次方程的应用,解题的关键在于弄懂题意、找到等量关系、并正确列出方程.24、(1)y与x的函数解析式为;(2)这一天销售西瓜获得利润的最大值为1250元.【解析】(1)当6x≤10时,由题意设y=kx+b(k=0),利用待定系数法求得k、b的值即可;当10<x≤12时,由图象可知y=200,由此即可得答案;(2))设利润为w元,当6≦x≤10时,w=-200+1250,根据二次函数的性质可求得最大值为1250;当10<x≤12时,w=200x-1200,由一次函数的性质结合x的取值范围可求得w的最大值为1200,两者比较即可得答案.【详解】(1)当6x≤10时,由题意设y=kx+b(k=0),它的图象经过点(6,1000)与点(10,200),∴,解得,∴当6x≤10时,y=-200x+2200,当10<x≤12时,y=200,综上,y与x的函数解析式为;(2)设利润为w元,当6x≤10时,y=-200x+2200,w=(x-6)y=(x-6)(-200x+200)=-200+1250,∵-200<0,6≦x≤10,当x=时,w有最大值,此时w=1250;当10<x≤12时,y=200,w=(x-6)y=200(x-6)=200x-1200,∴200>0,∴w=200x-1200随x增大而增大,又∵10<x≤12,∴当x=12时,w最大,此时w=1200,1250>1200,∴w的最大值为1250,答:这一天销售西瓜获得利润的最大值为1250元.【点睛】本题考查了一次函数的应用,二次函数的应用,涉及了待定系数法,二次函数的性质,一次函数的性质等,弄清题意,找准各量间的关系是解题的关键.25、(1)4500元;(2)7,4000;(3)4、5、6、7、8、9、10;(4).【解析】(1)利用待定系数法将(2,6500),(4,5500)代入y=kx+b求k,b确定表达式,求当x=6时的y值即可;(2)求销售额w与x之间的函数关系式,利用二次函数的最大值问题求解;(3)分三种情况讨论假设6月份,7月份,8月份的最大销售为22500万元时,求相应的m值,再分别求出此时另外两月的总利润,通过比较作出判断.【详解】设y=kx+b,根据图象将(2,6500),(4,5500)代入得,,解得,,∴y=-500x+7500,当x=6时,y=-500×6+7500=4500元;(2)设销售额为z元,z=yp=(-500x+7500)(x+1)=-500x2+7000x+7500=-500(x-7)2+32000,∵z与x成二次函数,a=-500<0,开口向下,∴当x=7时,z有最大值,当x=7时,y

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论