2023届甘肃省天水市重点中学数学九上期末学业质量监测模拟试题含解析_第1页
2023届甘肃省天水市重点中学数学九上期末学业质量监测模拟试题含解析_第2页
2023届甘肃省天水市重点中学数学九上期末学业质量监测模拟试题含解析_第3页
2023届甘肃省天水市重点中学数学九上期末学业质量监测模拟试题含解析_第4页
2023届甘肃省天水市重点中学数学九上期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.已知函数的图象如图所示,则一元二次方程根的存在情况是A.没有实数根 B.有两个相等的实数根C.有两个不相等的实数根 D.无法确定2.已知⊙O的半径是6,点O到直线l的距离为5,则直线l与⊙O的位置关系是A.相离 B.相切 C.相交 D.无法判断3.如图是半径为2的⊙O的内接正六边形ABCDEF,则圆心O到边AB的距离是()A.2 B.1 C. D.4.若函数y=(a-1)x2-4x+2a的图象与x轴有且只有一个交点,则a的值为().A.-1或2 B.-1或1C.1或2 D.-1或2或15.如图,△ABC≌△AEF且点F在BC上,若AB=AE,∠B=∠E,则下列结论错误的是()A.AC=AF B.∠AFE=∠BFE C.EF=BC D.∠EAB=∠FAC6.如图,AB是⊙O的直径,弦CD⊥AB于点M,若CD=8cm,MB=2cm,则直径AB的长为()A.9cm B.10cm C.11cm D.12cm7.如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35°,则∠CAB的度数为(

)A.35° B.45° C.55° D.65°8.如图,矩形的边在x轴上,在轴上,点,把矩形绕点逆时针旋转,使点恰好落在边上的处,则点的对应点的坐标为()A. B. C. D.9.下列条件中,一定能判断两个等腰三角形相似的是()A.都含有一个40°的内角 B.都含有一个50°的内角C.都含有一个60°的内角 D.都含有一个70°的内角10.函数y=ax2﹣1与y=ax(a≠0)在同一直角坐标系中的图象可能是()A. B. C. D.二、填空题(每小题3分,共24分)11.已知A(﹣4,y1),B(﹣1,y2),C(1,y3)是反比例函数y=﹣图象上的三个点,把y1与、的的值用小于号连接表示为________.12.布袋中装有3个红球和4个白球,它们除颜色外其余都相同,如果从这个布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是_______.13.如果一个四边形的某个顶点到其他三个顶点的距离相等,我们把这个四边形叫做等距四边形,这个顶点叫做这个四边形的等距点.如图,已知梯形ABCD是等距四边形,AB∥CD,点B是等距点.若BC=10,cosA=,则CD的长等于_____.14.如图,在△ABC中,∠C=90°,∠ADC=60°,∠B=30°,若CD=3cm,则BD=_____cm.15.使二次根式有意义的x的取值范围是_____.16.不等式>4﹣x的解集为_____.17.如图,Rt△ABC中,∠C=90°,且AC=1,BC=2,则sin∠A=_____.18.抛物线关于x轴对称的抛物线解析式为_______________.三、解答题(共66分)19.(10分)如图,四边形ABCD是矩形,E为CD边上一点,且AE、BE分别平分∠DAB、∠ABC.(1)求证:△ADE≌△BCE;(2)已知AD=3,求矩形的另一边AB的值.20.(6分)解方程:3x(1x+1)=4x+1.21.(6分)为改善生态环境,建设美丽乡村,某村规划将一块长18米,宽10米的矩形场地建设成绿化广场,如图,内部修建三条宽相等的小路,其中一条路与广场的长平行,另两条路与广场的宽平行,其余区域种植绿化,使绿化区域的面积为广场总面积的80%.(1)求该广场绿化区域的面积;(2)求广场中间小路的宽.22.(8分)已知△OAB在平面直角坐标系中的位置如图所示.请解答以下问题:(1)按要求作图:先将△ABO绕原点O逆时针旋转90°得△OA1B1,再以原点O为位似中心,将△OA1B1在原点异侧按位似比2:1进行放大得到△OA2B2;(2)直接写出点A1的坐标,点A2的坐标.23.(8分)如图,AB是圆O的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD.延长PD交圆的切线BE于点E(1)判断直线PD是否为⊙O的切线,并说明理由;(2)如果∠BED=60°,PD=,求PA的长;(3)将线段PD以直线AD为对称轴作对称线段DF,点F正好在圆O上,如图2,求证:四边形DFBE为菱形.24.(8分)知识改变世界,科技改变生活。导航设备的不断更新方便了人们的出行。如图,某校组织学生乘车到蒲江茶叶基地C地进行研学活动,车到达A地后,发现C地恰好在A地的正东方向,且距A地9.1千米,导航显示车辆应沿南偏东60°方向行驶至B地,再沿北偏东53°方向行驶一段距离才能到达C地,求B、C两地的距离(精确到个位)(参考数据)25.(10分)平面直角坐标系中,矩形OABC的顶点A,C的坐标分别为,,点D是经过点B,C的抛物线的顶点.(1)求抛物线的解析式;(2)点E是(1)中抛物线对称轴上一动点,求当△EAB的周长最小时点E的坐标;(3)平移抛物线,使抛物线的顶点始终在直线CD上移动,若平移后的抛物线与射线BD只有一个公共点,直接写出平移后抛物线顶点的横坐标的值或取值范围.26.(10分)阅读材料,解答问题:观察下列方程:①;②;③;…;(1)按此规律写出关于x的第4个方程为,第n个方程为;(2)直接写出第n个方程的解,并检验此解是否正确.

参考答案一、选择题(每小题3分,共30分)1、C【详解】试题分析:一次函数的图象有四种情况:①当,时,函数的图象经过第一、二、三象限;②当,时,函数的图象经过第一、三、四象限;③当,时,函数的图象经过第一、二、四象限;④当,时,函数的图象经过第二、三、四象限.由图象可知,函数的图象经过第二、三、四象限,所以,.根据一元二次方程根的判别式,方程根的判别式为,当时,,∴方程有两个不相等的实数根.故选C.2、C【解析】试题分析:根据直线与圆的位置关系来判定:①直线l和⊙O相交,则d<r;②直线l和⊙O相切,则d=r;③直线l和⊙O相离,则d>r(d为直线与圆的距离,r为圆的半径).因此,∵⊙O的半径为6,圆心O到直线l的距离为5,∴6>5,即:d<r.∴直线l与⊙O的位置关系是相交.故选C.3、C【分析】过O作OH⊥AB于H,根据正六边形ABCDEF的性质得到∠AOB==60°,根据等腰三角形的性质得到∠AOH=30°,AH=AB=1,于是得到结论.【详解】解:过O作OH⊥AB于H,在正六边形ABCDEF中,∠AOB==60°,∵OA=OB,∴∠AOH=30°,AH=AB=1,∴OH=AH=,故选:C.【点睛】本题主要考查了正多边形和圆,等腰三角形的性质,解直角三角形,正确的作出辅助线是解题的关键.4、D【解析】当该函数是一次函数时,与x轴必有一个交点,此时a-1=0,即a=1.当该函数是二次函数时,由图象与x轴只有一个交点可知Δ=(-4)2-4(a-1)×2a=0,解得a1=-1,a2=2.综上所述,a=1或-1或2.故选D.5、B【分析】全等三角形的对应边相等,对应角相等,△ABC≌△AEF,可推出AB=AE,∠B=∠E,AC=AF,EF=BC.【详解】∵△ABC≌△AEF∴AB=AE,∠B=∠E,AC=AF,EF=BC故A,C选项正确.∵△ABC≌△AEF∴∠EAF=∠BAC∴∠EAB=∠FAC故D答案也正确.∠AFE和∠BFE找不到对应关系,故不一定相等.故选:B.【点睛】本题考查全等三角形的性质,全等三角形对应边相等,对应角相等.6、B【分析】由CD⊥AB,可得DM=1.设半径OD=Rcm,则可求得OM的长,连接OD,在直角三角形DMO中,由勾股定理可求得OD的长,继而求得答案.【详解】解:连接OD,设⊙O半径OD为R,

∵AB是⊙O的直径,弦CD⊥AB于点M,∴DM=CD=1cm,OM=R-2,在RT△OMD中,OD²=DM²+OM²即R²=1²+(R-2)²,解得:R=5,∴直径AB的长为:2×5=10cm.

故选B.【点睛】本题考查了垂径定理以及勾股定理.注意掌握辅助线的作法及数形结合思想的应用.7、C【解析】分析:由同弧所对的圆周角相等可知∠B=∠ADC=35°;而由圆周角的推论不难得知∠ACB=90°,则由∠CAB=90°-∠B即可求得.详解:∵∠ADC=35°,∠ADC与∠B所对的弧相同,∴∠B=∠ADC=35°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB=90°-∠B=55°,故选C.点睛:本题考查了同弧所对的圆周角相等以及直径所对的圆周角是直角等知识.8、A【分析】作辅助线证明△∽△ON,列出比例式求出ON=,N=即可解题.【详解】解:过点作⊥x轴于M,过点作⊥x轴于N,由旋转可得,△∽△ON,∵OC=6,OA=10,∴ON::O=:OM:O=3:4:5,∴ON=,N=,∴的坐标为,故选A.【点睛】本题考查了相似三角形的性质,中等难度,做辅助线证明三角形相似是解题关键.9、C【解析】试题解析:因为A,B,D给出的角可能是顶角也可能是底角,所以不对应,则不能判定两个等腰三角形相似;故A,B,D错误;C.有一个的内角的等腰三角形是等边三角形,所有的等边三角形相似,故C正确.故选C.10、B【分析】本题可先通过抛物线与y轴的交点排除C、D,然后根据一次函数y=ax图象得到a的正负,再与二次函数y=ax2的图象相比较看是否一致.【详解】解:由函数y=ax2﹣1可知抛物线与y轴交于点(0,﹣1),故C、D错误;A、由抛物线可知,a>0,由直线可知,a<0,故A错误;B、由抛物线可知,a>0,由直线可知,a>0,故B正确;故选:B.【点睛】此题考查的是一次函数的图象及性质和二次函数的图象及性质,掌握一次函数的图象及性质与系数关系和二次函数的图象及性质与系数关系是解决此题的关键.二、填空题(每小题3分,共24分)11、【分析】根据反比例函数图象上点的坐标特征可分别计算出y1,y2,y3的值即可判断.【详解】∵A(﹣4,y1),B(﹣1,y2),C(1,y3)是反比例函数y=﹣图象上的三个点,∴,,,∴,故答案为:.【点睛】本题考查了反比例函数图象上点的坐标特征,由反比例函数确定函数值即可.12、【分析】由题意根据概率公式,求摸到红球的概率,即用红球除以小球总个数即可得出得到红球的概率.【详解】解:∵一个布袋里装有3个红球和4个白球,共7个球,∴摸出一个球摸到红球的概率为:,故答案为:.【点睛】本题主要考查概率公式的应用,由已知求出小球总个数再利用概率公式求出是解决问题的关键.13、16【解析】如图作BM⊥AD于M,DE⊥AB于E,BF⊥CD于F.易知四边形BEDF是矩形,理由面积法求出DE,再利用等腰三角形的性质,求出DF即可解决问题.【详解】连接BD,过点B分别作BM⊥AD于点M,BN⊥DC于点N,∵梯形ABCD是等距四边形,点B是等距点,∴AB=BD=BC=10,∵=,∴AM=,∴BM==3,∵BM⊥AD,∴AD=2AM=2,∵AB//CD,∴S△ABD=,∴BN=6,∵BN⊥DC,∴DN==8,∴CD=2DN=16,故答案为16.14、1【分析】根据30°直角三角形的比例关系求出AD,再根据外角定理证明∠DAB=∠B,即可得出BD=AD.【详解】∵∠B=30°,∠ADC=10°,∴∠BAD=∠ADC﹣∠B=30°,∴AD=BD,∵∠C=90°,∴∠CAD=30°,∴BD=AC=2CD=1cm,故答案为:1.【点睛】本题考查30°直角三角形的性质、外交定理,关键在于熟练掌握基础知识并灵活运用.15、x≤1【分析】直接利用二次根式有意义的条件分析得出答案.【详解】解:∵二次根式有意义,∴1﹣x≥0,解得:x≤1.故答案为:x≤1.【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.16、x>1.【分析】按照去分母、去括号、移项、合并同类项、系数化为1的步骤求解即可.【详解】解:去分母得:x﹣1>8﹣2x,移项合并得:3x>12,解得:x>1,故答案为:x>1【点睛】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.17、【解析】根据勾股定理先得出AB,再根据正弦的定义得出答案即可.【详解】解:∵∠C=90°,

∴AC2+BC2=AB2,

∵AC=1,BC=2,

∴AB=;

∴sinA=,

故答案为:.【点睛】本题考查了锐角三角函数的定义,掌握正弦、余弦、正切的定义是解题的关键.18、【分析】由关于x轴对称点的特点是:横坐标不变,纵坐标变为相反数,可求出抛物线的顶点关于x轴对称的顶点,关于x轴对称,则开口方向与原来相反,得出二次项系数,最后写出对称后的抛物线解析式即可.【详解】解:抛物线的顶点为(3,-1),点(3,-1)关于x轴对称的点为(3,1),又∵关于x轴对称,则开口方向与原来相反,所以,∴抛物线关于x轴对称的抛物线解析式为.故答案为:.【点睛】本题考查了二次函数的图象与几何变换,解题的关键是抓住关于x轴对称点的特点.三、解答题(共66分)19、(1)证明见解析;(2)AB=1.【分析】(1)根据矩形的性质,即可得到∠D=∠C,AD=BC,∠DAE=∠CBE=45°,进而得出△ADE≌△BCE;(2)依据△ADE是等腰直角三角形,即可得到DE的长,再根据全等三角形的性质以及矩形的性质,即可得到AB的长.【详解】解:(1)∵四边形ABCD是矩形,∴∠D=∠C=∠BAD=∠ABC=90°,AD=BC,又∵AE、BE分别平分∠DAB、∠ABC,∴∴∠DAE=∠CBE=45°,∴△ADE≌△BCE(ASA);(2)∵∠DAE=45°,∠D=90°,∴∠DAE=∠AED=45°,∴AD=DE=3,又∵△ADE≌△BCE,∴DE=CE=3,∴AB=CD=1.【点睛】本题考查了全等三角形的判定和性质,矩形的性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.20、=,=−.【分析】方程整理后,利用因式分解法即可得出结果.【详解】方程整理得:3x(1x+1)−1(1x+1)=0,分解因式得:(3x−1)(1x+1)=0,可得3x−1=0或1x+1=0,解得:=,=−.21、(1)该广场绿化区域的面积为144平方米;(2)广场中间小路的宽为1米.【分析】(1)根据该广场绿化区域的面积=广场的长×广场的宽×80%,即可求出结论;(2)设广场中间小路的宽为x米,根据矩形的面积公式(将绿化区域合成矩形),即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【详解】解:(1)18×10×80%=144(平方米).答:该广场绿化区域的面积为144平方米.(2)设广场中间小路的宽为x米,依题意,得:(18﹣2x)(10﹣x)=144,整理,得:x2﹣19x+18=0,解得:x1=1,x2=18(不合题意,舍去).答:广场中间小路的宽为1米.【点睛】本题考查的知识点是一元二次方程的应用,找准题目中的等量关系式是解此题的关键.22、(1)见解析;(2)点A1的坐标为:(﹣1,3),点A2的坐标为:(2,﹣6).【解析】(1)直接利用位似图形的性质得出对应点位置进而得出答案;(2)利用(1)中所画图形进而得出答案.【详解】(1)如图所示:△OA1B1,△OA2B2,即为所求;(2)点A1的坐标为:(﹣1,3),点A2的坐标为:(2,﹣6).【点睛】此题主要考查了位似变换以及旋转变换,正确得出对应点位置是解题关键.23、(1)证明见解析;(2)1;(3)证明见解析.【分析】(1)连接OD,由AB是圆O的直径可得∠ADB=90°,进而求得∠ADO+∠PDA=90°,即可得出直线PD为⊙O的切线;(2)根据BE是⊙O的切线,则∠EBA=90°,即可求得∠P=30°,再由PD为⊙O的切线,得∠PDO=90°,根据三角函数的定义求得OD,由勾股定理得OP,即可得出PA;(3)根据题意可证得∠ADF=∠PDA=∠PBD=∠ABF,由AB是圆O的直径,得∠ADB=90°,设∠PBD=x°,则可表示出∠DAF=∠PAD=90°+x°,∠DBF=2x°,由圆内接四边形的性质得出x的值,可得出△BDE是等边三角形.进而证出四边形DFBE为菱形.【详解】解:(1)直线PD为⊙O的切线,理由如下:如图1,连接OD,∵AB是圆O的直径,∴∠ADB=90°,∴∠ADO+∠BDO=90°,又∵DO=BO,∴∠BDO=∠PBD,∵∠PDA=∠PBD,∴∠BDO=∠PDA,∴∠ADO+∠PDA=90°,即PD⊥OD,∵点D在⊙O上,∴直线PD为⊙O的切线;(2)∵BE是⊙O的切线,∴∠EBA=90°,∵∠BED=60°,∴∠P=30°,∵PD为⊙O的切线,∴∠PDO=90°,在Rt△PDO中,∠P=30°,PD=,∴,解得OD=1,∴=2,∴PA=PO﹣AO=2﹣1=1;(3)如图2,依题意得:∠ADF=∠PDA,∠PAD=∠DAF,∵∠PDA=∠PBD∠ADF=∠ABF,∴∠ADF=∠PDA=∠PBD=∠ABF,∵AB是圆O的直径,∴∠ADB=90°,设∠PBD=x°,则∠DAF=∠PAD=90°+x°,∠DBF=2x°,∵四边形AFBD内接于⊙O,∴∠DAF+∠DBF=180°,即90°+x+2x=180°,解得x=30°,∴∠ADF=∠PDA=∠PBD=∠ABF=30°,∵BE、ED是⊙O的切线,∴DE=BE,∠EBA=90°,∴∠DBE=60°,∴△BDE是等边三角形,∴BD=DE=BE,又∵∠FDB=∠ADB﹣∠ADF=90°﹣30°=60°∠DBF=2x°=60°,∴△BDF是等边三角形,∴BD=DF=BF,∴DE=BE=DF=BF,∴四边形DFBE为菱形.【点睛】本题是一道综合性的题目,考查了切线的判定和性质,圆周角定理和菱形的性质,是中档题,难度较大.24、5千米【分析】作BD⊥AC,设AD=x,在Rt△ABD中求得BD,在Rt△BCD中求得CD,由AC=AD+CD建立关于x的方程,解之求得x的值,根据三角函数的定义即可得到结论.【详解】解:如图,作BD⊥AC于点D,则∠DAB=30°、∠DBC=53°,

设BD=x,

在Rt△ABD中,AD==

在Rt△BCD中,CD=BDtan∠DBC=x·tan53°=x由AC=AD+CD可得+x=9.1解得:x=则在Rt△BCD中,BC==即BC两地的距离约为5千米.【点睛】此题考查了方向角问题.解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解.25、(1);(2);(3)或【分析】(1)根据题意可得出点B的坐标,将点B、C的坐标分别代入二次函数解析式,求出b、c的值即可.(2)在对称轴上取一点E,连接EC、EB、EA,要使得EAB的周长最小,即要使EB+EA的值最小,即要使EA+EC的值最小,当点C、E、A三点共线时,EA+EC最小,求出直线AC的解析式,最后求出直线AC与对称轴的交点坐标即可.(3)求出直线CD以及射线BD的解析式,即可得出平移后顶点的坐标,写出二次函数顶点式解析式,分类讨论,如图:①当抛物线经过点B时,将点B的坐标代入二次函数解析式,求出m的值,写出m的范围即可;②当抛物线与射线恰好只有一个公共点H时,将抛物线解析式与射线解析式联立可得关于x的一元二次方程,要使平移后的抛物线与射线BD只有一个公共点,即要使一元二次方程有两个相等的实数根,即,列式求出m的值即可.【详解】(1)矩形OABC,OC=AB,A(2,0),C(0,3),OA=2,OC=3,B(2,3),将点B,C的坐标分别代入二次函数解析式,,,抛物线解析式为:.(2)如图,在对称轴上取一点E,连接EC、EB、EA,当点C

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论