2023届海南省儋州市第五中学数学九年级第一学期期末联考模拟试题含解析_第1页
2023届海南省儋州市第五中学数学九年级第一学期期末联考模拟试题含解析_第2页
2023届海南省儋州市第五中学数学九年级第一学期期末联考模拟试题含解析_第3页
2023届海南省儋州市第五中学数学九年级第一学期期末联考模拟试题含解析_第4页
2023届海南省儋州市第五中学数学九年级第一学期期末联考模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,两根竹竿和都斜靠在墙上,测得,则两竹竿的长度之比等于()A. B. C. D.2.将抛物线y=-2x2向左平移3个单位,再向下平移4个单位,所得抛物线为()A. B.C. D.3.在比例尺为1:1000000的地图上量得A,B两地的距离是20cm,那么A、B两地的实际距离是()A.2000000cm B.2000m C.200km D.2000km4.对于二次函数,下列说法正确的是()A.图象开口方向向下; B.图象与y轴的交点坐标是(0,-3);C.图象的顶点坐标为(1,-3); D.抛物线在x>-1的部分是上升的.5.如图,在△ABC中,D,E分别是AB,AC边上的点,DE∥BC,若AD=4,AB=6,BC=12,则DE等于()A.4 B.6 C.8 D.106.如图,在△ABC中,∠B=90°,AB=6,BC=8,将△ABC沿DE折叠,使点C落在△ABC边上C’处,并且C'D//BC,则CD的长是()A. B. C. D.7.如图,二次函数y=ax1+bx+c的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,1)与(0,3)之间(不包括这两点),对称轴为直线x=1.下列结论:abc<0;②9a+3b+c>0;③若点M(,y1),点N(,y1)是函数图象上的两点,则y1<y1;④﹣<a<﹣.其中正确结论有()A.1个 B.1个 C.3个 D.4个8.下列事件中,属于必然事件的是()A.方程无实数解B.在某交通灯路口,遇到红灯C.若任取一个实数a,则D.买一注福利彩票,没有中奖9.若方程x2+3x+c=0没有实数根,则c的取值范围是()A.c< B.c< C.c> D.c>10.下列汽车标志图片中,既是轴对称图形又是中心对称图形的是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,在平面直角坐标系中,抛物线与轴交于、两点,与轴交于点,点是对称轴右侧抛物线上一点,且,则点的坐标为___________.12.)已知反比例函数y=-,下列结论:①图象必经过点(-1,2);②y随x的增大而增大;③图象在第二、四象限内;④若x>1,则y>-2.其中正确的有__________.(填序号)13.已知一元二次方程x2-10x+21=0的两个根恰好分别是等腰三角形ABC的底边长和腰长,则△ABC的周长为_________.14.如图,O是正方形ABCD边上一点,以O为圆心,OB为半径画圆与AD交于点E,过点E作⊙O的切线交CD于F,将△DEF沿EF对折,点D的对称点D'恰好落在⊙O上.若AB=6,则OB的长为_____.15.若点P(3,1)与点Q关于原点对称,则点Q的坐标是___________.16.圆锥的底面半径为6,母线长为10,则圆锥的侧面积为__________.17.在平面直角坐标系中,正方形ABCD的位置如图所示,点的坐标为,点的坐标为,延长交轴于点,作正方形,延长交轴于点,作正方形,…按这样的规律进行下去,第个正方形的面积为_____________.18.如图,是以点为圆心的圆形纸片的直径,弦于点,.将阴影部分沿着弦翻折压平,翻折后,弧对应的弧为,则点与弧所在圆的位置关系为____________.三、解答题(共66分)19.(10分)如图,抛物线y1=a(x﹣1)2+4与x轴交于A(﹣1,0).(1)求该抛物线所表示的二次函数的表达式;(2)一次函数y2=x+1的图象与抛物线相交于A,C两点,过点C作CB垂直于x轴于点B,求△ABC的面积.20.(6分)如图,抛物线y=﹣x2+x+2与x轴交于点A,点B,与y轴交于点C,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线1交抛物线于点Q.(1)求点A、点B、点C的坐标;(2)当点P在线段OB上运动时,直线1交直线BD于点M,试探究m为何值时,四边形CQMD是平行四边形;(3)点P在线段AB上运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由.21.(6分)某校为培育青少年科技创新能力,举办了动漫制作活动,小明设计了点做圆周运动的一个雏形,如图所示,甲、乙两点分别从直径的两端点、,以顺时针、逆时针的方向同时沿圆周运动,甲运动的路程与时间满足关系,乙以的速度匀速运动,半圆的长度为.(1)甲运动后的路程是多少?(2)甲、乙从开始运动到第一次相遇时,它们运动了多少时间?(3)甲、乙从开始运动到第二次相遇时,它们运动了多少时间?22.(8分)如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,其边长为2,点A,点C分别在轴,轴的正半轴上.函数的图象与CB交于点D,函数(为常数,)的图象经过点D,与AB交于点E,与函数的图象在第三象限内交于点F,连接AF、EF.(1)求函数的表达式,并直接写出E、F两点的坐标.(2)求△AEF的面积.23.(8分)小尧用“描点法”画二次函数的图像,列表如下:x…-4-3-2-1012…y…50-3-4-30-5…(1)由于粗心,小尧算错了其中的一个y值,请你指出这个算错的y值所对应的x=;(2)在图中画出这个二次函数的图像;(3)当y≥5时,x的取值范围是.24.(8分)某校组织了主题为“我是青奥志愿者”的电子小报作品征集活动,先从中随机抽取了部分作品,按,,,四个等级进行评分,然后根据统计结果绘制了如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)求一共抽取了多少份作品?(2)此次抽取的作品中等级为的作品有份,并补全条形统计图;(3)扇形统计图中等级为的扇形圆心角的度数为;(4)若该校共征集到800份作品,请估计等级为的作品约有多少份?25.(10分)如图,在中,以为直径的交于点,连接,.(1)求证:是的切线;(2)若,求点到的距离.26.(10分)如图,一次函数y=kx+b(k≠0)与反比例函数y=(m≠0)的图象有公共点A(1,a)、D(﹣2,﹣1).直线l与x轴垂直于点N(3,0),与一次函数和反比例函数的图象分别交于点B、C.(1)求一次函数与反比例函数的解析式;(2)根据图象回答,x在什么范围内,一次函数的值大于反比例函数的值;(3)求△ABC的面积.

参考答案一、选择题(每小题3分,共30分)1、D【分析】在两个直角三角形中,分别求出AB、AD即可解决问题.【详解】根据题意:在Rt△ABC中,,则,在Rt△ACD中,,则,∴.故选:D.【点睛】本题考查了解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题.2、B【解析】根据“左加右减、上加下减”的原则进行解答即可.【详解】解:把抛物线y=-2x2先向左平移3个单位,再向下平移4个单位,所得的抛物线的解析式是y=-2(x+3)2-4,故选:B.【点睛】本题主要考查了二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.3、C【分析】比例尺=图上距离:实际距离,根据比例尺关系可直接得出A、B两地的实际距离.【详解】根据比例尺=图上距离:实际距离,得A、B两地的实际距离为20×1000000=20000000(cm),20000000cm=200km.故A、B两地的实际距离是200km.故选:C.【点睛】本题考查了线段的比,能够根据比例尺正确进行计算,注意单位的转化.4、D【解析】二次函数y=2(x+1)2-3的图象开口向上,顶点坐标为(-1,-3),对称轴为直线x=-1;当x=0时,y=-2,所以图像与y轴的交点坐标是(0,-2);当x>-1时,y随x的增大而增大,即抛物线在x>-1的部分是上升的,故选D.5、C【分析】由DE∥BC可得出△ADE∽△ABC,利用相似三角形的性质可得出,再代入AD=4,AB=6,BC=12即可求出DE的长.【详解】∵DE∥BC,∴△ADE∽△ABC,∴,即,∴DE=1.故选:C.【点睛】此题考查相似三角形的判定及性质,平行于三角形一边的直线与三角形的两边相交,所截出的三角形与原三角形相似,故而依次得到线段成比例,得到线段的长.6、A【分析】先由求出AC,再利用平行条件得△AC'D∽△ABC,则对应边成比例,又CD=C′D,那么就可求出CD.【详解】∵∠B=90°,AB=6,BC=8,∴AC==10,∵将△ABC沿DE折叠,使点C落在AB边上的C'处,∴CD=C'D,∵C'D∥BC,∴△AC'D∽△ABC,∴,即,∴CD=,故选A.【点睛】本题考查了翻折变换(折叠问题),相似三角形的判定与性质,熟练掌握和灵活运用相关知识是解题的关键.7、D【分析】根据二次函数的图象与系数的关系即可求出答案.【详解】①由开口可知:a<0,∴对称轴x=−>0,∴b>0,由抛物线与y轴的交点可知:c>0,∴abc<0,故①正确;②∵抛物线与x轴交于点A(-1,0),对称轴为x=1,∴抛物线与x轴的另外一个交点为(5,0),∴x=3时,y>0,∴9a+3b+c>0,故②正确;③由于<1<,且(,y1)关于直线x=1的对称点的坐标为(,y1),∵<,∴y1<y1,故③正确,④∵−=1,∴b=-4a,∵x=-1,y=0,∴a-b+c=0,∴c=-5a,∵1<c<3,∴1<-5a<3,∴-<a<-,故④正确故选D.【点睛】本题考查二次函数的图象与性质,解题的关键是熟练运用图象与系数的关系,本题属于中等题型.8、A【分析】根据必然事件就是一定发生的事件,即发生的概率是1的事件即可得出答案.【详解】解:A、方程2x2+3=0的判别式△=0﹣4×2×3=﹣24<0,因此方差2x2+3=0无实数解是必然事件,故本选项正确;B、在某交通灯路口,遇到红灯是随机事件,故本选项错误;C、若任取一个实数a,则(a+1)2>0是随机事件,故本选项错误;D、买一注福利彩票,没有中奖是随机事件,故本选项错误;故选:A.【点睛】本题主要考察随机事件,解题关键是熟练掌握随机事件的定义.9、D【分析】根据方程没有实数根,则解得即可.【详解】由题意可知:△==9﹣4c<0,∴c>,故选:D.【点睛】本题考查根的判别式,解题的关键是熟练运用根的判别式,本题属于基础题型.10、C【解析】根据轴对称图形和中心对称图形的性质进行判断即可.【详解】A.既不是轴对称图形,也不是中心对称图形,错误;B.是轴对称图形,不是中心对称图形,错误;C.既是轴对称图形,也是中心对称图形,正确;D.是轴对称图形,不是中心对称图形,错误;故答案为:C.【点睛】本题考查了轴对称图形和中心对称图形的问题,掌握轴对称图形和中心对称图形的性质是解题的关键.二、填空题(每小题3分,共24分)11、【分析】根据已知条件,需要构造直角三角形,过D做DH⊥CR于点H,用含字母的代数式表示出PH、RH,即可求解.【详解】解:过点D作DQ⊥x轴于Q,交CB延长线于R,作DH⊥CR于H,过R做RF⊥y轴于F,∵抛物线与轴交于、两点,与轴交于点,∴A(1,0),B(2,0)C(0,2)∴直线BC的解析式为y=-x+2设点D坐标为(m,m²-3m+2),R(m,-m+2),∴DR=m²-3m+2-(-m+2)=m²-2m∵OA=OB=2∴∠CAO=ACO=45°=∠QBR=∠RDH,∴CR=,∵经检验是方程的解.故答案为:【点睛】本题考查了函数性质和勾股定理逆定理的应用还有锐角三角函数值的应用,本题比较复杂,先根据题意构造直角三角形.12、①③④【解析】①当x=﹣1时,y=2,即图象必经过点(﹣1,2);②k=﹣2<0,每一象限内,y随x的增大而增大;③k=﹣2<0,图象在第二、四象限内;④k=﹣2<0,每一象限内,y随x的增大而增大,若x>1,则y>﹣2,故答案为①③④.13、1【分析】先求出方程的解,然后分两种情况进行分析,结合构成三角形的条件,即可得到答案.【详解】解:∵一元二次方程x2-10x+21=0有两个根,∴,∴,∴或,当3为腰长时,3+3<7,不能构成三角形;当7为腰长时,则周长为:7+7+3=1;故答案为:1.【点睛】本题考查了解一元二次方程,等腰三角形的定义,构成三角形的条件,解题的关键是掌握所学的知识,注意运用分类讨论的思想进行解题.14、【解析】连接OE、OD′,作OH⊥ED′于H,通过证得AEO≌△HEO(AAS),AE=EH=ED=2,设OB=OE=x.则AO=6﹣x,根据勾股定理得x2=22+(6﹣x)2,解方程即可求得结论.【详解】解:连接OE、OD′,作OH⊥ED′于H,∴EH=D′H=ED′∵ED′=ED,∴EH=ED,∵四边形ABCD是正方形,∴∠A=90°,AB=AD=6,∵EF是⊙O的切线,∴OE⊥EF,∴∠OEH+∠D′EF=90°,∠AEO+∠DEF=90°,∵∠DEF=∠D′EF,∴∠AEO=∠HEO,在△AEO和△HEO中∴△AEO≌△HEO(AAS),∴AE=EH=ED,∴设OB=OE=x.则AO=6﹣x,在Rt△AOE中,x2=22+(6﹣x)2,解得:x=,∴OB=,故答案为:.【点睛】本题是圆的综合题目,考查了切线的性质和判定、正方形的性质、勾股定理,方程,全等三角形的判定与性质等知识;本题主要考查了圆的切线及全等三角形的判定和性质,关键是作出辅助线利用三角形全等证明.15、(–3,–1)【分析】根据关于原点对称的点的规律:纵横坐标均互为相反数解答即可.【详解】根据关于原点对称的点的坐标的特点,可得:点P(3,1)关于原点过对称的点Q的坐标是(–3,–1).故答案为:(–3,–1).【点睛】本题主要考查了关于原点对称的点的坐标特点,解题时根据两个点关于原点对称时,它们的同名坐标互为相反数可直接得到答案,本题属于基础题,难度不大,注意平面直角坐标系中任意一点P(x,y),关于原点的对称点是(–x,–y),即关于原点的对称点,横纵坐标都变成相反数.16、【分析】圆锥的侧面积=×底面半径×母线长,把相应数值代入即可求解.【详解】圆锥的侧面积=×6×10=60cm1.故答案为.【点睛】本题考查圆锥侧面积公式的运用,掌握公式是关键.17、【分析】推出AD=AB,∠DAB=∠ABC=∠ABA1=90°=∠DOA,求出∠ADO=∠BAA1,证△DOA∽△ABA1,得出,求出AB,BA1,求出边长A1C=,求出面积即可;求出第2个正方形的边长是,求出面积,再求出第3个正方形的面积;依此类推得出第n个正方形的边长,求出面积即可.【详解】∵四边形ABCD是正方形,

∴AD=AB,∠DAB=∠ABC=∠ABA1=90°=∠DOA,

∴∠ADO+∠DAO=90°,∠DAO+∠BAA1=90°,

∴∠ADO=∠BAA1,

∵∠DOA=∠ABA1,

∴△DOA∽△ABA1,

∴,

∵AB=AD=∴BA1=∴第2个正方形A1B1C1C的边长A1C=A1B+BC=,面积是;同理第3个正方形的边长是面积是;第4个正方形的边长是,面积是…,

第n个正方形的边长是,面积是故答案为:【点睛】本题考查了正方形的性质,相似三角形的性质和判定,勾股定理的应用,解此题的关键是根据计算的结果得出规律,题目比较好,但是一道比较容易出错的题目18、点在圆外【分析】连接OC,作OF⊥AC于F,交弧于G,判断OF与FG的数量关系即可判断点和圆的位置关系.【详解】解:如图,连接OC,作OF⊥AC于F,交弧于G,∵,∴OA=OB=OC=5,AE=7,OE=2,∵,∴,∴,∵OF⊥AC,∴CF=AC,∴,∵,∴,∴,∴,∴点与弧所在圆的位置关系是点在圆外.故答案是:点在圆外.【点睛】本题考查了点和圆位置关系,利用垂径定理进行有关线段的计算,通过构造直角三角形是解题的关键.三、解答题(共66分)19、(1)y1=﹣(x﹣1)2+4;(2).【分析】(1)解答时先根据已知条件求出二次函数的表达式,(2)根据一次函数与抛物线相交的关系算出交点坐标,就可以算出三角形的面积【详解】(1)∵抛物线y1=a(x﹣1)2+4与x轴交于A(﹣1,0),∴0=a(﹣1﹣1)2+4,得a=﹣1,∴y1=﹣(x﹣1)2+4,即该抛物线所表示的二次函数的表达式是y1=﹣(x﹣1)2+4;(2)由得或∵一次函数y2=x+1的图象与抛物线相交于A,C两点,点A(﹣1,0),∴点C的坐标为(2,3),∵过点C作CB垂直于x轴于点B,∴点B的坐标为(2,0),∵点A(﹣1,0),点C(2,3),∴AB=2﹣(﹣1)=3,BC=3,∴△ABC的面积是==【点睛】此题重点考察学生对二次函数的理解,一次函数与二次函数的性质是解题的关键20、(1)A(﹣1,0),B(4,0),C(0,2);(2)m=2时,四边形CQMD是平行四边形;(3)存在,点Q(3,2)或(﹣1,0).【分析】(1)令抛物线关系式中的x=0或y=0,分别求出y、x的值,进而求出与x轴,y轴的交点坐标;(2)用m表示出点Q,M的纵坐标,进而表示QM的长,使CD=QM,即可求出m的值;(3)分三种情况进行解答,即①∠MBQ=90°,②∠MQB=90°,③∠QMB=90°分别画出相应图形进行解答.【详解】解:(1)抛物线y=﹣x2+x+2,当x=0时,y=2,因此点C(0,2),当y=0时,即:﹣x2+x+2=0,解得x1=4,x2=﹣1,因此点A(﹣1,0),B(4,0),故:A(﹣1,0),B(4,0),C(0,2);(2)∵点D与点C关于x轴对称,∴点D(0,﹣2),CD=4,设直线BD的关系式为y=kx+b,把D(0,﹣2),B(4,0)代入得,,解得,k=,b=﹣2,∴直线BD的关系式为y=x﹣2设M(m,m﹣2),Q(m,﹣m2+m+2),∴QM=﹣m2+m+2﹣m+2)=﹣m2+m+4,当QM=CD时,四边形CQMD是平行四边形;∴﹣m2+m+4=4,解得m1=0(舍去),m2=2,答:m=2时,四边形CQMD是平行四边形;(3)在Rt△BOD中,OD=2,OB=4,因此OB=2OD,①若∠MBQ=90°时,如图1所示,当△QBM∽△BOD时,QP=2PB,设点P的横坐标为x,则QP=﹣x2+x+2,PB=4﹣x,于是﹣x2+x+2=2(4﹣x),解得,x1=3,x2=4(舍去),当x=3时,PB=4﹣3=1,∴PQ=2PB=2,∴点Q的坐标为(3,2);②若∠MQB=90°时,如图2所示,此时点P、Q与点A重合,∴Q(﹣1,0);③由于点M在直线BD上,因此∠QMB≠90°,这种情况不存在△QBM∽△BOD.综上所述,点P在线段AB上运动过程中,存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似,点Q(3,2)或(﹣1,0).【点睛】本题考查的是动态几何中的相似三角形问题.考查的知识点有二次函数的性质、平行四边形的判定、两点间的距离公式、相似三角形的判定,利用二次函数性质设Q的坐标是解题关键.注意要考虑全各种情况,不要漏解.21、(1)28cm;(2)3s;(3)7s【分析】(1)将t=4代入公式计算即可;(2)第一次相遇即是共走半圆的长度,据此列方程,求解即可;(3)第二次相遇应是走了三个半圆的长度,得到,解方程即可得到答案.【详解】解:(1)当t=4s时,cm.答:甲运动4s后的路程是.(2)由图可知,甲乙第一次相遇时走过的路程为半圆,甲走过的路程为,乙走过的路程为,则.解得或(不合题意,舍去).答:甲、乙从开始运动到第一次相遇时,它们运动了3s.(3)由图可知,甲乙第二次相遇时走过的路程为三个半圆,则解得或(不合题意,舍去).答:甲、乙从开始运动到第二次相遇时,它们运动了7s.【点睛】此题考查一元二次方程的实际应用,正确理解题意是解题的关键.22、(1),E(2,1),F(-1,-2);(2).【分析】(1)先得到点D的坐标,再求出k的值即可确定反比例函数解析式;(2)过点F作FG⊥AB,与BA的延长线交于点G.由E、F两点的坐标,得到AE=1,FG=2-(-1)=3,从而得到△AEF的面积.【详解】解:(1)∵正方形OABC的边长为2,∴点D的纵坐标为2,即y=2,将y=2代入y=2x,得到x=1,∴点D的坐标为(1,2).∵函数的图象经过点D,∴,∴k=2,∴函数的表达式为.(2)过点F作FG⊥AB,与BA的延长线交于点G.根据反比例函数图象的对称性可知:点D与点F关于原点O对称∴点F的坐标分别为(-1,-2),把x=2代入得,y=1;∴点E的坐标(2,1);∴AE=1,FG=2-(-1)=3,∴△AEF的面积为:AE•FG=.23、(1)2;(2)详见解析;(3)或【分析】(1)由表格给出的信息可以看出,该函数的对称轴为直线x=-1,则x=-4与x=2时应取值相同.(2)将表格中的x,y值看作点的坐标,分别在坐标系中描出这几个点,用平滑曲线连接即可作出这个二次函数的图象;(3)根据抛物线的对称轴,开口方向,利用二次函数的对称性判断出x=-4或2时,y=5,然后写出y≥5时,x的取值范围即可.【详解】解:(1)从表格可以看出,当x=-2或x=0时,y=-3,

可以判断(-2,-3),(0,-3)是抛物线上的两个对称点,

(-1,-4)就是顶点,设抛物线顶点式y=a(x+1)2-4,

把(0,-3)代入解析式,-3=a-4,解得a=1,

所以,抛物线解析式为y=(x+1)2-4,

当x=-4时,y=(-4+1)2-4=5,

当x=2时,y=(2+1)2-4=5≠-5,

所以这个错算的y值所对应的x=2;(2)描点、连线,如图:(3)∵函数开口向上,当y=5时,x=-4或2,∴当y≥5时,由图像可得:x≤-4或x≥2.【点睛】本题考查用待定系数法求二次函数解析式、二次函数的性质、画函数图像、二次函数与不等式,解题的关键是正确分析表中的数据.24、(1)120份;(2)48,图见解析;(3);(4)240份【分析】(1)利用共抽取作品数等级数对应的百分比求解即可,(2)求出抽取的作品中等级为的作品数,即可作图,(3)利用等级为的扇形圆心角的度数等级为的扇形圆心角的百分比求解即可,(4)利用该校共征集到800份作品乘等级为的作品的百分比即可.【详解】解:(1)(份),

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论