版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.二次函数化为的形式,结果正确的是()A. B.C. D.2.方程x2﹣9=0的解是()A.3 B.±3 C.4.5 D.±4.53.下列图形中既是轴对称图形,又是中心对称图形的是()A. B. C. D.4.如图,正方形的面积为16,是等边三角形,点在正方形内,在对角线上有一点,使的和最小,则这个最小值为()A.2 B.4 C.6 D.85.如图,在△ABC中,DE∥BC,DE分别交AB,AC于点D,E,若AD:DB=1:2,则△ADE与△ABC的面积之比是()A.1:3 B.1:4 C.1:9 D.1:166.已知点是线段的黄金分割点,且,,则长是()A. B. C. D.7.下列一元二次方程中,两个实数根之和为2的是()A.2x2+x﹣2=0 B.x2+2x﹣2=0 C.2x2﹣x﹣1=0 D.x2﹣2x﹣2=08.如果,那么下列各式中不成立的是()A.; B.; C.; D.9.如图,已知△ABC与△DEF位似,位似中心为点O,且△ABC的面积等于△DEF面积的,则AO:AD的值为()A.2:3 B.2:5 C.4:9 D.4:1310.如图,⊙A、⊙B、⊙C、⊙D、⊙E相互外离,它们的半径都是1,顺次连接五个圆心得到五边形ABCDE,则图中五个扇形(阴影部分)的面积之和是()A. B.1.5 C.2 D.2.511.如图,已知在△ABC中,P为AB上一点,连接CP,以下条件中不能判定△ACP∽△ABC的是()A. B. C. D.12.二次函数图象如图,下列结论正确的是()A. B.若且,则C. D.当时,二、填空题(每题4分,共24分)13.如图,正△ABO的边长为2,O为坐标原点,A在轴上,B在第二象限.△ABO沿轴正方向作无滑动的翻滚,经第一次翻滚后得△A1B1O,则翻滚10次后AB中点M经过的路径长为________14.如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC的值为______.15.在一块边长为30cm的正方形飞镖游戏板上,有一个半径为10cm的圆形阴影区域,则飞镖落在阴影区域内的概率为__________.16.如图,点、、、在射线上,点、、、在射线上,且,.若和的面积分别为和,则图中三个阴影三角形面积之和为___________.17.如图,点在双曲线()上,过点作轴,垂足为点,分别以点和点为圆心,大于的长为半径作弧,两弧相交于,两点,作直线交轴于点,交轴于点,连接.若,则的值为______.18.如图,正方形ABCD中,E是AD的中点,BM⊥CE,AB=6,则BM=_____________.三、解答题(共78分)19.(8分)在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸球的次数n10020030050080010003000摸到白球的次数m651241783024815991803摸到白球的频率0.650.620.5930.6040.6010.5990.601(1)请估计:当n很大时,摸到白球的频率将会接近;(精确到0.1)(2)假如你摸一次,你摸到白球的概率P(白球)=;(3)试估算盒子里黑、白两种颜色的球各有多少只?20.(8分)如图,直径为AB的⊙O交的两条直角边BC,CD于点E,F,且,连接BF.(1)求证CD为⊙O的切线;(2)当CF=1且∠D=30°时,求⊙O的半径.21.(8分)已知正比例函数y=x的图象与反比例函数y=(k为常数,且k≠0)的图象有一个交点的纵坐标是1.(Ⅰ)当x=4时,求反比例函数y=的值;(Ⅱ)当﹣1<x<﹣1时,求反比例函数y=的取值范围.22.(10分)如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,求∠BCD的度数.23.(10分)在△ABC中,AB=AC,∠BAC=120°,以CA为边在∠ACB的另一侧作∠ACM=∠ACB,点D为射线BC上任意一点,在射线CM上截取CE=BD,连接AD、DE、AE.(1)如图1,当点D落在线段BC的延长线上时,求∠ADE的度数;(2)如图2,当点D落在线段BC(不含边界)上时,AC与DE交于点F,试问∠ADE的度数是否发生变化?如果不变化,请给出理由;如果变化了,请求出∠ADE的度数;(3)在(2)的条件下,若AB=6,求CF的最大值.24.(10分)在“阳光体育”活动时间,小英、小丽、小敏、小洁四位同学进行一次羽毛球单打比赛,要从中选出两位同学打第一场比赛.(1)若已确定小英打第一场,再从其余三位同学中随机选取一位,求恰好选中小丽同学的概率;(2)用画树状图或列表的方法,求恰好选中小敏、小洁两位同学进行比赛的概率.25.(12分).如图,小明在大楼的东侧A处发现正前方仰角为75°的方向上有一热气球在C处,此时,小亮在大楼的西侧B处也测得气球在其正前方仰角为30°的位置上,已知AB的距离为60米,试求此时小明、小亮两人与气球的距离AC和BC.(结果保留根号)26.解方程:x2+x﹣1=1.
参考答案一、选择题(每题4分,共48分)1、A【分析】将选项展开后与原式对比即可;【详解】A:,故正确;B:,故错误;C:,故错误;D:,故错误;故选A.【点睛】本题主要考查了二次函数的三种形式,掌握二次函数的三种形式是解题的关键.2、B【解析】根据直接开方法即可求出答案.【详解】解:∵x2﹣9=0,∴x=±3,故选:B.【点睛】本题考察了直接开方法解方程,注意开方时有两个根,别丢根3、D【分析】根据轴对称图形与中心对称图形的概念分别分析得出答案.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.【点睛】本题考查轴对称图形与中心对称图形的概念,理解掌握两个定义是解答关键.4、B【分析】由于点B与点D关于AC对称,所以连接BE,与AC的交点即为F,此时,FD+FE=BE最小,而BE是等边三角形ABE的边,BE=AB,由正方形面积可得AB的长,从而得出结果.【详解】解:由题意可知当点P位于BE与AC的交点时,有最小值.设BE与AC的交点为F,连接BD,∵点B与点D关于AC对称∴FD=FB∴FD+FE=FB+FE=BE最小又∵正方形ABCD的面积为16∴AB=1∵△ABE是等边三角形∴BE=AB=1.故选:B.【点睛】本题考查的知识点是轴对称中的最短路线问题,解题的关键是弄清题意,找出相对应的相等线段.5、C【分析】根据DE∥BC,即可证得△ADE∽△ABC,然后根据相似三角形的面积的比等于相似比的平方,即可求解.【详解】解:∵AD:DB=1:2,∴AD:AB=1:3,∵DE∥BC,∴△ADE∽△ABC,∴=()2=.故选:C.【点睛】此题主要考查相似三角形的性质,解题的关键是熟知相似三角形的面积的比等于相似比的平方.6、C【分析】利用黄金分割比的定义即可求解.【详解】由黄金分割比的定义可知∴故选C【点睛】本题主要考查黄金分割比,掌握黄金分割比是解题的关键.7、D【分析】利用根与系数的关系进行判断即可.【详解】方程1x1+x﹣1=0的两个实数根之和为;方程x1+1x﹣1=0的两个实数根之和为﹣1;方程1x1﹣x﹣1=0的两个实数根之和为;方程x1﹣1x﹣1=0的两个实数根之和为1.故选D.【点睛】本题考查了根与系数的关系:若x1,x1是一元二次方程ax1+bx+c=0(a≠0)的两根时,x1+x1,x1x1.8、D【解析】试题分析:由题意分析可知:A中,,故不选A;B中,,故不选;C中,;D中,,故选D考点:代数式的运算点评:本题属于对代数式的基本运算规律和代数式的代入分析的求解9、B【分析】由△ABC经过位似变换得到△DEF,点O是位似中心,根据位似图形的性质得到AB:DO═2:3,进而得出答案.【详解】∵△ABC与△DEF位似,位似中心为点O,且△ABC的面积等于△DEF面积的,∴=,AC∥DF,∴==,∴=.故选:B.【点睛】此题考查了位似图形的性质.注意掌握位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方.10、B【分析】本题考查的是扇形面积,圆心角之和等于五边形的内角和,由于半径相同,那么根据扇形的面积公式计算即可.【详解】图中五个扇形(阴影部分)的面积是,故选B.11、C【分析】A、加一公共角,根据两角对应相等的两个三角形相似可以得结论;B、加一公共角,根据两角对应相等的两个三角形相似可以得结论;C、其夹角不相等,所以不能判定相似;D、其夹角是公共角,根据两边的比相等,且夹角相等,两三角形相似.【详解】A、∵∠A=∠A,∠ACP=∠B,∴△ACP∽△ABC,所以此选项的条件可以判定△ACP∽△ABC;B、∵∠A=∠A,∠APC=∠ACB,∴△ACP∽△ABC,所以此选项的条件可以判定△ACP∽△ABC;C、∵,当∠ACP=∠B时,△ACP∽△ABC,所以此选项的条件不能判定△ACP∽△ABC;D、∵,又∠A=∠A,∴△ACP∽△ABC,所以此选项的条件可以判定△ACP∽△ABC,本题选择不能判定△ACP∽△ABC的条件,故选C.【点睛】本题考查了相似三角形的判定,熟练掌握相似三角形的判定方法是关键.12、D【分析】根据二次函数的图象得到相关信息并依次判断即可得到答案.【详解】由图象知:a<0,b>0,c>0,,∴abc<0,故A选项错误;若且,∴对称轴为,故B选项错误;∵二次函数的图象的对称轴为直线x=1,与x轴的一个交点的横坐标小于3,∴与x轴的另一个交点的横坐标大于-1,当x=-1时,得出y=a-b+c<0,故C选项错误;∵二次函数的图象的对称轴为直线x=1,开口向下,∴函数的最大值为y=a+b+c,∴,∴,故D选项正确,故选:D.【点睛】此题考查二次函数的图象,根据函数图象得到对应系数的符号,并判断代数式的符号,正确理解二次函数图象与系数的关系是解题的关键.二、填空题(每题4分,共24分)13、(4+)【分析】根据题意先作B3E⊥x轴于E,观察图象可知为三次一个循环,求点M的运动路径,进而分析求得翻滚10次后AB中点M经过的路径长.【详解】解:如图作B3E⊥x轴于E,可知OE=5,B3E=,观察图象可知为三次一个循环,一个循环点M的运动路径为:,则翻滚10次后AB中点M经过的路径长为:.故答案为:(4+).【点睛】本题考查规律题,解题的关键是灵活运用弧长公式、等边三角形的性质等知识解决问题.14、1【分析】连接BC,由网格求出AB,BC,AC的长,利用勾股定理的逆定理得到△ABC为等腰直角三角形,即可求出所求.【详解】解:连接,
由网格可得,,即,
∴为等腰直角三角形,
∴,
则,故答案为1.【点睛】此题考查了锐角三角函数的定义,解直角三角形,以及勾股定理,熟练掌握勾股定理是解本题的关键.15、【分析】分别计算半径为10cm的圆的面积和边长为30cm的正方形ABCD的面积,然后计算即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm的圆的面积=π•102=100πcm2,
边长为30cm的正方形ABCD的面积=302=900cm2,
∴P(飞镖落在圆内)=,故答案为:.【点睛】本题考查了几何概率,掌握概率=相应的面积与总面积之比是解题的关键.16、【分析】由已知可证,从而得到,利用和等高,可求出,同理求出另外两个三角形的面积,则阴影部分的面积可求.【详解】∵,.∴∴∵和的面积分别为和∴∵和等高∴∴同理可得∴阴影部分的面积为故答案为42【点睛】本题主要考查相似三角形的判定及性质,掌握相似三角形的判定方法及所求三角形与已知三角形之间的关系是解题的关键.17、【分析】设OA交CF于K.利用面积法求出OA的长,再利用相似三角形的性质求出AB、OB即可解决问题;【详解】解:如图,设OA交CF于K.由作图可知,CF垂直平分线段OA,∴OC=CA=1,OK=AK,在Rt△OFC中,CF=,∴AK=OK=,∴OA=,∵∠AOB+∠AOF=90°,∠CFO+∠AOF=90°,∴∠AOB=∠CFO,又∵∠ABO=∠COF,∴△FOC∽△OBA,∴,∴,∴OB=,AB=,∴A(,),∴k=×=.故答案为:.【点睛】本题考查了尺规作图-作线段的垂直平分线,线段垂直平分线的性质,反比例函数图象上的点的坐标特征,勾股定理,相似三角形的判定与性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18、【分析】根据正方形的性质,可证△BCM∽△CED,可得,即可求BM的长【详解】解:正方形ABCD中,AB=6,E是AD的中点,故ED=3;CE=3,∵BM⊥CE,∴△BCM∽△CED,根据相似三角形的性质,可得,解得:BM=.【点睛】主要考查了正方形的性质和相似三角形的判定和性质.充分利用正方形的特殊性质来找到相似的条件从而判定相似后利用相似三角形的性质解题.一般情况下求线段的长度常用相似中的比例线段求解.三、解答题(共78分)19、(1)0.6;(2)0.6;(3)白球有24只,黑球有16只.【解析】试题分析:通过题意和表格,可知摸到白球的概率都接近与0.6,因此摸到白球的概率估计值为0.6.20、(1)证明见解析;(2).【分析】(1)连接OF,只要证明OF∥BC,即可推出OF⊥CD,由此即可解决问题;(2)连接AF,利用∠D=30°,求出∠CBF=∠DBF=30°,得出BF=2,在利用勾股定理得出AB的长度,从而求出⊙O的半径.【详解】(1)连接OF,∵,∴∠CBF=∠FBA,∵OF=OB,∴∠FBO=∠OFB,∵点A、O、B三点共线,∴∠CBF=∠OFB,∴BC∥OF,∴∠OFC+∠C=180°,∵∠C=90°,∴∠OFC=90°,即OF⊥DC,∴CD为⊙O的切线;(2)连接AF,∵AB为直径,∴∠AFB=90°,∵∠D=30°,∴∠CBD=60°,∵,∴∠CBF=∠DBF=∠CBD=30°,在,CF=1,∠CBF=30°,∴BF=2CF=2,在,∠ABF=30°,BF=2,∴AF=AB,∴AB2=(AB)2+BF2,即AB2=4,∴,⊙O的半径为;【点睛】本题考查切线的判定、直角三角形30度角的性质、勾股定理,直径对的圆周角为90°等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.21、(Ⅰ)1;(Ⅱ)﹣4<y<﹣1.【解析】(Ⅰ)首先把y=1代入直线的解析式,求得交点坐标,然后利用待定系数法求得反比例函数的解析式,最后把x=4代入求解;(Ⅱ)首先求得当x=﹣1和x=﹣1时y的值,然后根据反比例函数的性质求解.【详解】解:(Ⅰ)在y=x中,当y=1时,x=1,则交点坐标是(1,1),把(1,1)代入y=,得:k=4,所以反比例函数的解析式为y=,当x=4,y==1;(Ⅱ)当x=﹣1时,y==﹣1;当x=﹣1时,y==﹣4,则当﹣1<x<﹣1时,反比例函数y=的范围是:﹣4<y<﹣1.【点睛】此题考查了反比例函数与一次函数的交点问题,以及反比例函数的增减性,两函数的交点即为同时满足两函数解析式的点,其中用待定系数法确定函数的解析式,是常用的一种解题方法.同学们要熟练掌握这种方法.22、136°【解析】试题分析:由∠BOD=88°,根据“圆周角定理”可得∠BAD的度数;由四边形ABCD是⊙O的内接四边形,可得∠BAD+∠BCD=180°,由此即可解得∠BCD的度数.试题解析:∵∠BOD=88°,∴∠BAD=88°÷2=44°,∵四边形ABCD是⊙O的内接四边形,∴∠BAD+∠BCD=180°,∴∠BCD=180°﹣44°=136°.23、(1)∠ADE=30°;(2)∠ADE=30°,理由见解析;(3)【分析】(1)利用SAS定理证明△ABD≌△ACE,根据全等三角形的性质得到AD=AE,∠CAE=∠BAD,根据等腰三角形的性质、三角形内角和定理计算即可证明;(2)同(1)的证明方法相同;(3)证明△ADF∽△ACD,根据相似三角形的性质得到,求出AD的最小值,得到AF的最小值,求出CF的最大值.【详解】解:(1)∠ADE=30°.理由如下:∵AB=AC,∠BAC=120°,∴∠ABC=∠ACB=30°,∵∠ACM=∠ACB,∴∠ACM=∠ABC,在△ABD和△ACE中,∵,∴△ABD≌△ACE,∴AD=AE,∠CAE=∠BAD,∴∠DAE=∠BAC=120°,∴∠ADE=30°;(2)(1)中的结论成立,证明:∵∠BAC=120°,AB=AC,∴∠B=∠ACB=30°.∵∠ACM=∠ACB,∴∠B=∠ACM=30°.在△ABD和△ACE中,∵,∴△ABD≌△ACE,∴AD=AE,∠BAD=∠CAE,∴∠CAE+∠DAC=∠BAD+∠DAC=∠BAC=120°.即∠DAE=120°,∵AD=AE,∴∠ADE=∠AED=30°;(3)∵AB=AC,AB=6,∴AC=6,∵∠ADE=∠ACB=30°且∠DAF=∠CAD,∴△ADF∽△ACD,∴,∴AD2=AF•AC,∴AD2=6AF,∴AF=,∴当AD最短时,AF最短、CF最长,易得当AD⊥BC时,AF最短、CF最长,此时AD=AB=3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年环境管理体系3篇
- 2024年果园景观使用权合同
- 湄洲湾职业技术学院《数学建模1》2023-2024学年第一学期期末试卷
- 2024年度民办学校校长任期综合评价合同3篇
- 2024年度医院医疗质量管理员聘用协议3篇
- 2024年度水车租赁及环保技术应用合同范本3篇
- 2024年权益让渡协议全书
- 2025三方房屋租赁合同
- 2025年货运从业资格证在那里考
- 2024年度高速公路服务区充电停车位租赁合同模板3篇
- 小儿全麻患者术后护理
- 黑龙江省哈尔滨市2023-2024学年八年级上学期语文期末模拟考试试卷(含答案)
- 理论力学(浙江大学)知到智慧树章节答案
- 云南省普通高中2023-2024学年高一上学期1月期末学业水平考试技术试卷
- 2024年百科知识竞赛题库及答案(共三套)
- JGJ-T490-2021钢框架内填墙板结构技术标准
- 愚公移山英文 -中国故事英文版课件
- 国开经济学(本)1-14章练习试题及答案
- 部编版一年级上册形近字组词(共3页)
- 不知不觉也是牛仔元老了转一篇日牛知识贴.doc
- 三相桥式有源逆变电路的仿真Word版
评论
0/150
提交评论