版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,在⊙O的内接四边形ABCD中,AB是直径,∠BCD=120°,过D点的切线PD与直线AB交于点P,则∠ADP的度数为()A.40° B.35° C.30° D.45°2.《孙子算经》是我国古代重要的数学著作,其有题译文如下:“有一根竹竿在太阳下的影子长尺.同时立一根尺的小标杆,它的影长是尺。如图所示,则可求得这根竹竿的长度为()尺A. B. C. D.3.一条排水管的截面如图所示,已知排水管的半径,水面宽,则截面圆心到水面的距离是()
A.3 B.4 C. D.84.如图,以原点O为圆心的圆交x轴于点A、B两点,交y轴的正半轴于点C,D为第一象限内上的一点,若,则的度数是A.B.C.D.5.如图,平面直角坐标系中,,反比例函数的图象分别与线段交于点,连接.若点关于的对称点恰好在上,则()A. B. C. D.6.的值为()A. B. C. D.7.在一个不透明的口袋中,装有若干个红球和9个黄球,它们只有颜色不同,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球试验发现,摸到黄球的频率是0.3,则估计口袋中大约有红球()A.21个 B.14个 C.20个 D.30个8.如图,在中,DE∥BC,,,,()A.8 B.9 C.10 D.129.如图是二次函数y=ax2+bx+c的图象,对于下列说法:其中正确的有()①ac>0,②2a+b>0,③4ac<b2,④a+b+c<0,⑤当x>0时,y随x的增大而减小,A.5个 B.4个 C.3个 D.2个10.小华同学的身高为米,某一时刻他在阳光下的影长为米,与他邻近的一棵树的影长为米,则这棵树的高为()A.米 B.米 C.米 D.米二、填空题(每小题3分,共24分)11.已知袋中有若干个小球,它们除颜色外其它都相同,其中只有2个红球,若随机从中摸出一个,摸到红球的概率是,则袋中小球的总个数是_____12.)已知反比例函数y=-,下列结论:①图象必经过点(-1,2);②y随x的增大而增大;③图象在第二、四象限内;④若x>1,则y>-2.其中正确的有__________.(填序号)13.分别写有数字0,|-2|,-4,,-5的五张卡片,除数字不同外其它均相同,从中任抽一张,那么抽到非负数的概率是_________.14.半径为5的圆内接正六边形的边心距为__________.15.已知关于x的一元二次方程x2+kx﹣6=0有一个根为﹣3,则方程的另一个根为_____.16.如图,平面直角坐标系中,⊙P与x轴分别交于A、B两点,点P的坐标为(3,-1),AB=2.将⊙P沿着与y轴平行的方向平移,使⊙P与轴相切,则平移距离为_____.17.已知甲、乙两组数据的折线图如图,设甲、乙两组数据的方差分别为S甲2、S乙2,则S甲2__S乙2(填“>”、“=”、“<”)18.已知是一元二次方程的一个根,则的值是______.三、解答题(共66分)19.(10分)如图,直线y=﹣x+1与x轴,y轴分别交于A,B两点,抛物线y=ax2+bx+c过点B,并且顶点D的坐标为(﹣2,﹣1).(1)求该抛物线的解析式;(2)若抛物线与直线AB的另一个交点为F,点C是线段BF的中点,过点C作BF的垂线交抛物线于点P,Q,求线段PQ的长度;(3)在(2)的条件下,点M是直线AB上一点,点N是线段PQ的中点,若PQ=2MN,直接写出点M的坐标.20.(6分)如图,在平面直角坐标系中,一次函数的图象与反比例函数()的图象交于,两点,已知点坐标为.(1)求一次函数和反比例函数的解析式;(2)连接,,求的面积.21.(6分)定义:只有一组对角是直角的四边形叫做损矩形,连接它的两个非直角顶点的线段叫做这个损矩形的直径.如图1,∠ABC=∠ADC=90°,四边形ABCD是损矩形,则该损矩形的直径是线段AC.同时我们还发现损矩形中有公共边的两个三角形角的特点:在公共边的同侧的两个角是相等的.如图1中:△ABC和△ABD有公共边AB,在AB同侧有∠ADB和∠ACB,此时∠ADB=∠ACB;再比如△ABC和△BCD有公共边BC,在CB同侧有∠BAC和∠BDC,此时∠BAC=∠BDC.(1)请在图1中再找出一对这样的角来:=.(2)如图2,△ABC中,∠ABC=90°,以AC为一边向外作菱形ACEF,D为菱形ACEF对角线的交点,连接BD,当BD平分∠ABC时,判断四边形ACEF为何种特殊的四边形?请说明理由.(3)在第(2)题的条件下,若此时AB=6,BD=8,求BC的长.22.(8分)阅读下面的材料:小明同学遇到这样一个问题,如图1,AB=AE,∠ABC=∠EAD,AD=mAC,点P在线段BC上,∠ADE=∠ADP+∠ACB,求的值.小明研究发现,作∠BAM=∠AED,交BC于点M,通过构造全等三角形,将线段BC转化为用含AD的式子表示出来,从而求得的值(如图2).(1)小明构造的全等三角形是:_________≌________;(2)请你将小明的研究过程补充完整,并求出的值.(3)参考小明思考问题的方法,解决问题:如图3,若将原题中“AB=AE”改为“AB=kAE”,“点P在线段BC上”改为“点P在线段BC的延长线上”,其它条件不变,若∠ACB=2α,求:的值(结果请用含α,k,m的式子表示).23.(8分)如图,在等腰Rt△ABC中,∠ACB=90°,AC=BC,点P为BC边上一点(不与B、C重合),连接PA,以P为旋转中心,将线段PA顺时针旋转90°,得到线段PD,连接DB.(1)请在图中补全图形;(2)∠DBA的度数.24.(8分)已知正方形ABCD的边长为2,中心为M,⊙O的半径为r,圆心O在射线BD上运动,⊙O与边CD仅有一个公共点E.(1)如图1,若圆心O在线段MD上,点M在⊙O上,OM=DE,判断直线AD与⊙O的位置关系,并说明理由;(2)如图2,⊙O与边AD交于点F,连接MF,过点M作MF的垂线与边CD交于点G,若,设点O与点M之间的距离为,EG=,当时,求的函数解析式.25.(10分)如图,中,,是的中点,于.(1)求证:;(2)当时,求的度数.26.(10分)若关于x的一元二次方程(m+1)x2﹣2x﹣1=0有两个不相等的实数根,(1)求m的取值范围;(2)若x=1是方程的一个根,求m的值和另一个根.
参考答案一、选择题(每小题3分,共30分)1、C【分析】连接,即,又,故,所以;又因为为切线,利用切线与圆的关系即可得出结果.【详解】解:连接BD,∵∠DAB=180°﹣∠C=60°,∵AB是直径,∴∠ADB=90°,∴∠ABD=90°﹣∠DAB=30°,∵PD是切线,∴∠ADP=∠ABD=30°,故选C.【点睛】本题考查了圆内接四边形的性质,直径对圆周角等于直角,弦切角定理,弦切角等于它所夹的弧对的圆周角求解.2、B【分析】根据同一时刻物高与影长成正比可得出结论.【详解】设竹竿的长度为x尺,∵太阳光为平行光,∴,解得x=45(尺)..故选:B.【点睛】本题考查的是相似三角形的应用,熟知同一时刻物高与影长成正比是解答此题的关键.3、D【分析】根据垂径定理,OC⊥AB,故OC平分AB,由AB=12,得出BC=6,再结合已知条件和勾股定理,求出OC即可.【详解】解:∵OC⊥AB,AB=12∴BC=6∵∴OC=故选D.【点睛】本题主要考查了垂径定理以及勾股定理,能够熟悉定理以及准确的运算是解决本题的关键.4、D【分析】根据圆周角定理求出,根据互余求出∠COD的度数,再根据等腰三角形性质即可求出答案.【详解】解:连接OD,,,,,.故选D.【点睛】本题考查了圆周角定理,等腰三角形性质等知识.熟练应用圆周角定理是解题的关键.5、C【解析】根据,可得矩形的长和宽,易知点的横坐标,的纵坐标,由反比例函数的关系式,可用含有的代数式表示另外一个坐标,由三角形相似和对称,可用求出的长,然后把问题转化到三角形中,由勾股定理建立方程求出的值.【详解】过点作,垂足为,设点关于的对称点为,连接,如图所示:则,易证,,,在反比例函数的图象上,,在中,由勾股定理:即:解得:故选C.【点睛】此题综合利用轴对称的性质,相似三角形的性质,勾股定理以及反比例函数的图象和性质等知识,发现与的比是是解题的关键.6、C【分析】根据特殊角的三角函数值解答即可.【详解】tan60°=,故选C.【点睛】本题考查了特殊角三角函数值,熟记特殊角的三角函数值是解题关键.7、A【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】由题意可得:解得:x=21,经检验,x=21是原方程的解故红球约有21个,故选:A.【点睛】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.8、D【分析】先由DE∥BC得出,再将已知数值代入即可求出AC.【详解】∵DE∥BC,∴,∵AD=5,BD=10,∴AB=5+10=15,∵AE=4,∴,∴AC=12.故选:D.【点睛】本题考查平行线分线段成比例,熟练掌握平行线分线段成比例定理是解题的关键.9、C【分析】根据二次函数的图象与性质,结合图象分别得出a,c,以及b2﹣4ac的符号进而求出答案.【详解】①由图象可知:a>0,c<0,∴ac<0,故①错误;②由于对称轴可知:﹣<1,∴2a+b>0,故②正确;③由于抛物线与x轴有两个交点,∴△=b2﹣4ac>0,故③正确;④由图象可知:x=1时,y=a+b+c<0,故④正确;⑤由图象可得,当x>﹣时,y随着x的增大而增大,故⑤错误;故正确的有3个.故选:C.【点睛】此题考查二次函数的一般式y=ax2+bx+c的性质,熟记各字母对函数图象的决定意义是解题的关键.10、B【分析】在同一时刻物高和影长成正比,即在同一时刻的两个问题物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.【详解】据相同时刻的物高与影长成比例,
设这棵树的高度为xm,
则可列比例为解得,x=4.1.
故选:B【点睛】本题主要考查同一时刻物高和影长成正比,考查利用所学知识解决实际问题的能力.二、填空题(每小题3分,共24分)11、8个【解析】根据概率公式结合取出红球的概率即可求出袋中小球的总个数.【详解】袋中小球的总个数是:2÷=8(个).故答案为8个.【点睛】本题考查了概率公式,根据概率公式算出球的总个数是解题的关键.12、①③④【解析】①当x=﹣1时,y=2,即图象必经过点(﹣1,2);②k=﹣2<0,每一象限内,y随x的增大而增大;③k=﹣2<0,图象在第二、四象限内;④k=﹣2<0,每一象限内,y随x的增大而增大,若x>1,则y>﹣2,故答案为①③④.13、【分析】根据概率的求解公式,首先弄清非负数卡片有3张,共有5张卡片,即可算出概率.【详解】由题意,得数字是非负数的卡片有0,|-2|,,共3张,则抽到非负数的概率是,故答案为:.【点睛】此题主要考查概率的求解,熟练掌握,即可解题.14、【分析】连接OA、OB,作OH⊥AB,根据圆内接正六边形的性质得到△ABO是等边三角形,利用垂径定理及勾股定理即可求出边心距OH.【详解】如图,连接OA、OB,作OH⊥AB,∵六边形ABCDEF是圆内接正六边形,∴∠FAB=∠ABC=180-,∴∠OAB=∠OBA=60,∴△ABO是等边三角形,∴AB=OA=5,∵OH⊥AB,∴AH=2.5,∴OH=,故答案为:.【点睛】此题考查圆内接正六边形的性质,垂径定理,勾股定理.解题中熟记正六边形的性质得到∠FAB=∠ABC=120是解题的关键,由此即可证得△ABO是等边三角形,利用勾股定理解决问题.15、1【分析】设方程的另一个根为a,根据根与系数的关系得出a+(﹣3)=﹣k,﹣3a=﹣6,求出即可.【详解】设方程的另一个根为a,则根据根与系数的关系得:a+(﹣3)=﹣k,﹣3a=﹣6,解得:a=1,故答案为1.【点睛】本题考查了根与系数的关系和一元二次方程的解,能熟记根与系数的关系的内容是解此题的关键.16、1或1【分析】过点P作PC⊥x轴于点C,连接PA,由垂径定理得⊙P的半径为2,因为将⊙P沿着与y轴平行的方向平移,使⊙P与轴相切,分两种情况进行讨论求值即可.由【详解】解:过点P作PC⊥x轴于点C,连接PA,AB=,,点P的坐标为(1,-1),PC=1,,将⊙P沿着与y轴平行的方向平移,使⊙P与轴相切,①当沿着y轴的负方向平移,则根据切线定理得:PC=PA=2即可,因此平移的距离只需为1即可;②当沿着y轴正方向移动,由①可知平移的距离为3即可.故答案为1或1.【点睛】本题主要考查圆的基本性质及切线定理,关键是根据垂径定理得到圆的半径,然后进行分类讨论即可.17、>【解析】要比较甲、乙方差的大小,就需要求出甲、乙的方差;首先根据折线统计图结合根据平均数的计算公式求出这两组数据的平均数;接下来根据方差的公式求出甲、乙两个样本的方差,然后比较即可解答题目.【详解】甲组的平均数为:=4,S甲2=×[(3-4)2+(6-4)2+(2-4)2+(6-4)2+(4-4)2+(3-4)2]=,乙组的平均数为:=4,S乙2=×[(4-4)2+(3-4)2+(5-4)2+(3-4)2+(4-4)2+(5-4)2]=,∵>,∴S甲2>S乙2.故答案为:>.【点睛】本题考查的知识点是方差,算术平均数,折线统计图,解题的关键是熟练的掌握方差,算术平均数,折线统计图.18、0【分析】将代入方程中,可求出m的两个解,然后根据一元二次方程的定义即可判断m可取的值.【详解】解:将代入一元二次方程中,得解得:∵是一元二次方程∴解得故m=0故答案为:0.【点睛】此题考查的是一元二次方程的定义和解,掌握一元二次方程的二次项系数不为0和解的定义是解决此题的关键.三、解答题(共66分)19、(1)y=x2+2x+1;(2)5;(3)M(,﹣)或(﹣,)【分析】(1)先求出点B坐标,再将点D,B代入抛物线的顶点式即可;(2)如图1,过点C作CH⊥y轴于点H,先求出点F的坐标,点C的坐标,再求出直线CM的解析式,最后可求出两个交点及交点间的距离;(3)设M(m,﹣m+1),如图2,取PQ的中点N,连接MN,证点P,M,Q同在以PQ为直径的圆上,所以∠PMQ=90°,利用勾股定理即可求出点M的坐标.【详解】解:(1)在y=﹣x+1中,当x=0时,y=1,∴B(0,1),∵抛物线y=ax2+bx+c过点B,并且顶点D的坐标为(﹣2,﹣1),∴可设抛物线解析式为y=a(x+2)2﹣1,将点B(0,1)代入,得,a=,∴抛物线的解析式为:y=(x+2)2﹣1=x2+2x+1;(2)联立,解得,或,∴F(﹣5,),∵点C是BF的中点,∴xC==﹣,yC==,∴C(﹣,),如图1,过点C作CH⊥y轴于点H,则∠HCB+∠CBH=90°,又∵∠MCH+∠HCB=90°,∴∠CBH=∠MCH,又∠CHB=∠MHC=90°,∴△CHB∽△MHC,∴=,即=,解得,HM=5,∴OM=OH+MH=+5=,∴M(0,),设直线CM的解析式为y=kx+,将C(﹣,)代入,得,k=2,∴yCM=2x+,联立2x+=x2+2x+1,解得,x1=,x2=﹣,∴P(,5+),Q(﹣,﹣5+),∴PQ==5;(3)∵点M在直线AB上,∴设M(m,﹣m+1),如图2,取PQ的中点N,连接MN,∵PQ=2MN,∴NM=NP=NQ,∴点P,M,Q同在以PQ为直径的圆上,∴∠PMQ=90°,∴MP2+MQ2=PQ2,∴+=(5)2,解得,m1=,m2=﹣,∴M(,﹣)或(﹣,).【点睛】本题考查了待定系数法求解析式,两点间的距离,勾股定理等,解题关键是需要有较强的计算能力.20、(1)一次函数的解析式为,反比例函数的解析式为;(2)6【分析】(1)由点的坐标利用一次函数、反比例函数图象上点的坐标特征即可得出反比例函数解析式;(2)联立一次函数、反比例函数得方程,解方程组即可求出AB点坐标,求出直线与轴的交点坐标后,即可求出和,继而求出的面积.【详解】解:(1)将代入解析式与得,,,一次函数的解析式为,反比例函数的解析式为;(2)解方程组得或,,设直线与轴,轴交于,点,易得,即,.【点睛】本题考查了反比例函数与一次函数的交点问题、待定系数法求一次函数和反比例函数解析式以及三角形的面积,解题的关键是:根据点的坐标利用待定系数法求出函数解析式;利用分割图形求面积法求出的面积.21、(1)∠ABD=∠ACD(或∠DAC=∠DBC);(2)四边形ACEF为正方形,理由见解析;(3)1【分析】(1)根据题意给出的性质即可得出一组角相等;(2)先证明四边形ACEF为菱形,再证明四边形ABCD为损矩形,根据损矩形的性质即可求出四边形ACEF是正方形;(3)过点D作DM⊥BC,过点E作EN⊥BC交BC的延长线于点N,可得△BDM为等腰直角三角形,从而得出△ABC≌△CNE根据性质即可得出BC的长.【详解】(1)由图1得:△ABD和△ADC有公共边AD,在AD同侧有∠ABD和∠ACD,此时∠ABD=∠ACD;故答案为:∠ABD=∠ACD(或∠DAC=∠DBC);(2)四边形ACEF为正方形证明:∵∠ABC=90°,BD平分∠ABC,∴∠ABD=∠CBD=45°,∵四边形ACEF为菱形,∴AE⊥CF,即∠ADC=90°,∵∠ABC=90°,∴四边形ABCD为损矩形,由(1)得∠ACD=∠ABD=45°,∴∠ACE=2∠ACD=90°,∴四边形ACEF为正方形.(3)过点D作DM⊥BC,过点E作EN⊥BC交BC的延长线于点N,∵∠DBM=45°,∴△BDM为等腰直角三角形,∴BM=DM=,∵AC=EC,∠ACE=90°,∠ABC=CNE=90°,∴∠ACB=∠CEN,∴△ABC≌△CNE(AAS),∴CN=AB=6,∵DM∥EN,AD=DE,∴BM=MN=8,∴BC=BN﹣CN=2BM﹣CN=1.【点睛】本题考查新定义下的图形计算,主要运用到矩形菱形正方形的性质,三角形全等的判定和性质,关键在于熟练掌握基础知识,合理利用辅助线得出条件计算.22、(1);(2);(3).【分析】(1)根据已知条件直接猜想得出结果;(2)过点作交于点,易证,再根据结合已知条件得出结果;(3)过点作交于点,过点作,得出,根据相似三角形的性质及已知条件得出,进而求解.【详解】(1)解:;(2)过点作交于点.在中和,,,,∴.∴,.∴.∵,,∴.∵.∵,∴.∴.∴.(3)解:过点作交于点.在中和,,,∴.∴,.∴,.∵,∴.∵,,∴.∴.过点作.∴,,.在中,,∴.∴.∴.【点睛】本题考查了三角形全等的性质及判定,相似三角形的判定与性质,解题的关键是熟练掌握这些性质并能灵活运用.23、(1)见解析;(2)90°【分析】(1)依题意画出图形,如图所示;(2)先判断出∠BPD=∠EPA,从而得出△PDB≌△PAE,简单计算即可.【详解】解:(1)依题意补全图形,如图所示,(2)过点P作PE∥AC,∴∠PEB=∠CAB,∵AB=BC,∴∠CBA=∠CAB,∴∠PEB=∠PBE,∴PB=PE,∵∠BPD+∠DPE=∠EPA+∠DPE=90°,∴∠BPD=∠EPA,∵PA=PD,∴△PDB≌△PAE(SAS),∵∠PBA=∠PEB=(180°﹣90°)=45°,∴∠PBD=∠PEA=180°﹣∠PEB=135°,∴∠DBA=∠PBD﹣∠PBA=90°.【点睛】本题考查了作图旋转变换,全等三角形的性质和判定,判断是解本题的关键,也是难点.24、(1)相切,证明详见解析;(2).【分析】(1)过O作OF⊥AD于F,连接OE,可证△ODF≌△ODE,可得OF=OE,根据相切判定即可得出:AD与相切;(2)连接MC,可证,可得DF=CG,过点E作EP⊥BD于P,过点F作FH⊥BD于H设DP=a,DH=b,由于△DHF与△DPE都是等腰直角三角形,设EP=DP=a,FH=DH=b,利用勾股定理:可列出方程组解得a=b,可得,.由于可得,由可得OD=a,由OD=OM-DM,可得,代入2DF+y=2可得,整理得y与x的函数解析式,由DF≤1,EG≥0,可得x的取值范围,即可求解问题.【详解】解:(1)直线AD与⊙O相切,理由如下:过O作OF⊥AD于F,连接OE∴∠OFD=90°在正方形ABCD中,BD平分∠ADE,∠ADE=90°∴∠FDO=∠EDO=45°∵与CD仅有一个公共点E∴CD与相切∴OE⊥DC,OE为半径∴∠OED=90°又∵OD=OD∴△ODF≌△ODE∴OF=OE∵OF⊥AD、OF=OE∴AD与相切(2)连接MC在正方形ABCD中,∠BCD=90°,∠ADB=45°∵∠BCD=90°,M为正方形的中心∴MC=MD=,∠ADB=∠DCM=45°∵FM⊥MG,即∠FMG=90°且在正方形ABCD中,∠DMC=90°∴∠FMD+∠DMG=∠DMG+∠CMG∴∠FMD=∠CMG∴∴DF=CG过点E作EP⊥BD于P,过点F作FH⊥BD于H设DP=a,DH=b∵∠FDM=∠EDM=45°∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年环境管理体系3篇
- 2024年果园景观使用权合同
- 湄洲湾职业技术学院《数学建模1》2023-2024学年第一学期期末试卷
- 2024年度民办学校校长任期综合评价合同3篇
- 2024年度医院医疗质量管理员聘用协议3篇
- 2024年度水车租赁及环保技术应用合同范本3篇
- 2024年权益让渡协议全书
- 2025三方房屋租赁合同
- 2025年货运从业资格证在那里考
- 2024年度高速公路服务区充电停车位租赁合同模板3篇
- 小儿全麻患者术后护理
- 愚公移山英文 -中国故事英文版课件
- 国开经济学(本)1-14章练习试题及答案
- 光学设计与光学工艺
- 项目工程质量管理体系
- 家长进课堂(课堂PPT)
- 定喘神奇丹_辨证录卷四_方剂树
- 货物运输通知单
- 部编版一年级上册形近字组词(共3页)
- 不知不觉也是牛仔元老了转一篇日牛知识贴.doc
- 三相桥式有源逆变电路的仿真Word版
评论
0/150
提交评论