版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,已知▱ABCD中,E是边AD的中点,BE交对角线AC于点F,那么S△AFE:S四边形FCDE为()A.1:3 B.1:4 C.1:5 D.1:62.如图,中,,,,则()A. B. C. D.3.下列计算正确的是()A.3x﹣2x=1 B.x2+x5=x7C.x2•x4=x6 D.(xy)4=xy44.抛物线y=﹣(x+1)2﹣3的顶点坐标是()A.(1,﹣3) B.(1,3) C.(﹣1,3) D.(﹣1,﹣3)5.若函数,则当函数值y=8时,自变量x的值是()A.± B.4 C.±或4 D.4或-6.如图,是正内一点,若将绕点旋转到,则的度数为()A. B.C. D.7.下列计算正确的是()A. B.C. D.8.如图,是反比例函数与在x轴上方的图象,点C是y轴正半轴上的一点,过点C作轴分别交这两个图象与点A和点B,P和Q在x轴上,且四边形ABPQ为平行四边形,则四边形ABPQ的面积等于()A.20 B.15 C.10 D.59.已知点是线段的黄金分割点,且,,则长是()A. B. C. D.10.根据国家外汇管理局公布的数据,截止年月末,我国外汇储备规模为亿美元,较年初上升亿美元,升幅,数据亿用科学计数法表示为()A. B. C. D.11.在平面直角坐标系中,将抛物线y=x2的图象向左平移3个单位、再向下平移2个单位所得的抛物线的函数表达式为()A.y=(x-3)2-2 B.y=(x-3)2+2 C.y=(x+3)2-2 D.y=(x+3)2+212.如图所示,将一个含角的直角三角板绕点逆时针旋转,点的对应点是点,若点、、在同一条直线上,则三角板旋转的度数是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,在△ABC中DE∥BC,点D在AB边上,点E在AC边上,且AD:DB=2:3,四边形DBCE的面积是10.5,则△ADE的面积是____.14.小华在距离路灯6米的地方,发现自己在地面上的影长是2米,若小华的身高为1.6米,那么路灯离地面的高度是_____米.15.如图,由10个完全相同的正三角形构成的网格图中,如图所示,则=______.16.若关于x的一元二次方程x2+mx+m2﹣19=0的一个根是﹣3,则m的值是_____.17.cos30°=__________18.如图,在Rt△ABC中∠B=50°,将△ABC绕直角顶点A顺时针旋转得到△ADE.当点C在B1C1边所在直线上时旋转角∠BAB1=____度.三、解答题(共78分)19.(8分)同时抛掷3枚硬币做游戏,其中1元硬币1枚,5角硬币两枚.(1)求3枚硬币同时正面朝上的概率.(2)小张、小王约定:正面朝上按面值算,背面朝上按0元算.3枚落地后,若面值和为1.5元,则小张获得1分;若面值和为1元,则小王得1分.谁先得到10分,谁获胜,请问这个游戏是否公平?并说明理由.20.(8分)如图,已知在矩形ABCD中,AB=6,BC=8,点P从点C出发以每秒1个单位长度的速度沿着CD在C点到D点间运动(当达D点后则停止运动),同时点Q从点D出发以每秒2个单位长度的速度沿着DA在D点到A点间运动(当达到A点后则停止运动).设运动时间为t秒,则按下列要求解决有关的时间t.(1)△PQD的面积为5时,求出相应的时间t;(2)△PQD与△ABC可否相似,如能相似求出相应的时间t,如不能说明理由;(3)△PQD的面积可否为10,说明理由.21.(8分)如图,有一座圆弧形拱桥,它的跨度为,拱高为,当洪水泛滥到跨度只有时,就要采取紧急措施,若某次洪水中,拱顶离水面只有,即时,试通过计算说明是否需要采取紧急措施.22.(10分)(问题呈现)阿基米德折弦定理:如图1,AB和BC是⊙O的两条弦(即折线ABC是圆的一条折弦),BC>AB,点M是的中点,则从M向BC所作垂线的垂足D是折弦ABC的中点,即CD=DB+BA.下面是运用“截长法”证明CD=DB+BA的部分证明过程.证明:如图2,在CD上截取CG=AB,连接MA、MB、MC和MG.∵M是的中点,∴MA=MC①又∵∠A=∠C②∴△MAB≌△MCG③∴MB=MG又∵MD⊥BC∴BD=DG∴AB+BD=CG+DG即CD=DB+BA根据证明过程,分别写出下列步骤的理由:①,②,③;(理解运用)如图1,AB、BC是⊙O的两条弦,AB=4,BC=6,点M是的中点,MD⊥BC于点D,则BD=;(变式探究)如图3,若点M是的中点,(问题呈现)中的其他条件不变,判断CD、DB、BA之间存在怎样的数量关系?并加以证明.(实践应用)根据你对阿基米德折弦定理的理解完成下列问题:如图4,BC是⊙O的直径,点A圆上一定点,点D圆上一动点,且满足∠DAC=45°,若AB=6,⊙O的半径为5,求AD长.23.(10分)如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D为⊙O上一点,OD⊥AC,垂足为E,连接BD.(1)求证:BD平分∠ABC;(2)当∠ODB=30°时,求证:BC=OD.24.(10分)阅读以下材料,并按要求完成相应的任务.“圆材埋壁”是我国古代数学著作《九章算术》中的一个问题:今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?用现在的数学语言表达是:如图,为的直径,弦,垂足为,寸,尺,其中1尺寸,求出直径的长.解题过程如下:连接,设寸,则寸.∵尺,∴寸.在中,,即,解得,∴寸.任务:(1)上述解题过程运用了定理和定理.(2)若原题改为已知寸,尺,请根据上述解题思路,求直径的长.(3)若继续往下锯,当锯到时,弦所对圆周角的度数为.25.(12分)我们知道,有理数包括整数、有限小数和无限循环小数,事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么无限循环小数如何表示为分数形式呢?请看以下示例:例:将化为分数形式由于,设x=0.777…①则10x=7.777…②②‒①得9x=7,解得,于是得.同理可得,根据以上阅读,回答下列问题:(以下计算结果均用最简分数表示)(基础训练)(1),;(2)将化为分数形式,写出推导过程;(能力提升)(3),;(注:,2.01818…)(探索发现)(4)①试比较与1的大小:1;(填“>”、“<”或“=”)②若已知,则.(注:0.285714285714…)26.已知矩形中,,,点、分别在边、上,将四边形沿直线翻折,点、的对称点分别记为、.(1)当时,若点恰好落在线段上,求的长;(2)设,若翻折后存在点落在线段上,则的取值范围是______.
参考答案一、选择题(每题4分,共48分)1、C【解析】根据AE∥BC,E为AD中点,找到AF与FC的比,则可知△AEF面积与△FCE面积的比,同时因为△DEC面积=△AEC面积,则可知四边形FCDE面积与△AEF面积之间的关系.【详解】解:连接CE,∵AE∥BC,E为AD中点,
∴.
∴△FEC面积是△AEF面积的2倍.
设△AEF面积为x,则△AEC面积为3x,
∵E为AD中点,
∴△DEC面积=△AEC面积=3x.
∴四边形FCDE面积为1x,
所以S△AFE:S四边形FCDE为1:1.
故选:C.【点睛】本题考查相似三角形的判定和性质、平行四边形的性质,解题关键是通过线段的比得到三角形面积的关系.2、B【分析】由题意根据勾股定理求出BC,进而利用三角函数进行分析即可求值.【详解】解:∵中,,,,∴,∴.故选:B.【点睛】本题主要考查勾股定理和锐角三角函数的定义及运用,注意掌握在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.3、C【分析】分别根据合并同类项的法则,同底数幂的乘法法则,幂的乘方与积的乘方逐一判断即可.【详解】解:3x﹣2x=x,故选项A不合题意;x2与x5不是同类项,故不能合并,故选项B不合题意;x2•x4=x6,正确,故选项C符合题意;,故选项D不合题意.故选:C.【点睛】本题主要考查了合并同类项,同底数幂的乘法以及幂的乘方与积的乘方,熟练掌握运算法则是解答本题的关键.4、D【解析】根据二次函数顶点式解析式写出顶点坐标即可.【详解】解:抛物线y=﹣(x+1)2﹣3的顶点坐标是(﹣1,﹣3).故选:D.【点睛】本题考查了二次函数的性质,熟练掌握利用顶点式解析式写出顶点坐标的方法是解题的关键.5、D【详解】把y=8代入第二个方程,解得x=4大于2,所以符合题意;把y=8代入第一个方程,解得:x=,又由于x小于等于2,所以x=舍去,所以选D6、B【分析】根据旋转的性质可得:△PBC≌△P′BA,故∠PBC=∠P′BA,即可求解.【详解】由已知得△PBC≌△P′BA,所以∠PBC=∠P′BA,所以∠PBP′=∠P′BA+∠PBA,=∠PBC+∠PBA,=∠ABC,=60°.故选:B.【点睛】本题考查旋转的性质.旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.7、C【分析】分别根据合并同类项的法则、完全平方公式、幂的乘方以及同底数幂的乘法化简即可判断.【详解】A、,故选项A不合题意;B.,故选项B不合题意;C.,故选项C符合题意;D.,故选项D不合题意,故选C.【点睛】本题考查了合并同类项、幂的运算以及完全平方公式,熟练掌握各运算的运算法则是解答本题的关键.8、C【解析】分别过A、B作AD、BE垂直x轴,易证,则平行四边形ABPQ的面积等于矩形ADEB的面积,根据反比例函数比例系数k的几何意义分别求得矩形ADOC和矩形BEOC的面积,相加即可求得结果.【详解】解:如图,分别过A、B作AD、BE垂直x轴于点D、点E,则四边形ADEB是矩形,易证,∴S矩形ABED,∵点A在反比例函数上,由反比例函数比例系数k的几何意义可得:S矩形ADOC=|k|=3,同理可得:S矩形BEOC=7,∴S矩形ABED=S矩形ADOC+S矩形BEOC=3+7=10,故选:C.【点睛】本题考查了反比例函数比例系数k的几何意义,熟练运用比例系数k的几何意义是解决本题的关键.9、C【分析】利用黄金分割比的定义即可求解.【详解】由黄金分割比的定义可知∴故选C【点睛】本题主要考查黄金分割比,掌握黄金分割比是解题的关键.10、B【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】亿=3.0924×1012,
故选:B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11、C【解析】先确定抛物线y=x2的顶点坐标为(0,0),再根据点平移的规律得到点(0,0)向左平移3个单位、再向下平移2个单位所得对应点的坐标为-3,-2,然后利用顶点式写出新抛物线解析式即可.【详解】抛物线y=x2的顶点坐标为(0,0),把点(0,0)向左平移3个单位、再向下平移2个单位所得对应点的坐标为-3,-2,所以平移后的抛物线解析式为y=(x+3)2-2.故选:C.【点睛】考查二次函数的平移,掌握二次函数平移的规律是解题的关键.12、D【分析】根据旋转角的定义,两对应边的夹角就是旋转角,即可求解.【详解】解:旋转角是故选:D.【点睛】本题考查的是旋转的性质,掌握对应点与旋转中心所连线段的夹角等于旋转角是解题的关键.二、填空题(每题4分,共24分)13、1【分析】由AD:DB=1:3,可以得到相似比为1:5,所以得到面积比为4:15,设△ADE的面积为4x,则△ABC的面积为15x,故四边形DBCE的面积为11x,根据题意四边形的面积为10.5,可以求出x,即可求出△ADE的面积.【详解】∵DE∥BC∴,∵AD:DB=1:3∴相似比=1:5
∴面积比为4:15设△ADE的面积为4x,则△ABC的面积为15x,故四边形DBCE的面积为11x∴11x=10.5,解得x=0.5∴△ADE的面积为:4×0.5=1故答案为:1.【点睛】本题主要考查了相似三角形,熟练面积比等于相似比的平方以及准确的列出方程是解决本题的关键.14、6.1【解析】解:设路灯离地面的高度为x米,根据题意得:,解得:x=6.1.故答案为6.1.15、.【解析】给图中各点标上字母,连接DE,利用等腰三角形的性质及三角形内角和定理可得出∠α=30°,同理,可得出:∠CDE=∠CED=30°=∠α,由∠AEC=60°结合∠AED=∠AEC+∠CED可得出∠AED=90°,设等边三角形的边长为a,则AE=2a,DE=a,利用勾股定理可得出AD的长,再结合余弦的定义即可求出cos(α+β)的值.【详解】给图中各点标上字母,连接DE,如图所示.在△ABC中,∠ABC=120°,BA=BC,∴∠α=30°.同理,可得出:∠CDE=∠CED=30°=∠α.又∵∠AEC=60°,∴∠AED=∠AEC+∠CED=90°.设等边三角形的边长为a,则AE=2a,DE=2×sin60°•a=a,∴,∴cos(α+β)=.故答案为:.【点睛】本题考查了解直角三角形、等边三角形的性质以及规律型:图形的变化类,构造出含一个锐角等于∠α+∠β的直角三角形是解题的关键.16、-2或1.【解析】将x=-3代入原方程,得9-3m+m2-19=0,m2-3m-10=0,(m-1)(m+2)=0,m=-2或1.故答案为-2或1.点睛:已知方程的一个实数根,要求方程中的未知参数,把根代入方程即可.17、【分析】直接利用特殊角的三角函数值进而得出答案.【详解】cos30°=.故答案为.【点睛】本题主要考查了特殊角的三角函数值,准确记忆特殊角的三角函数值是解题的关键.18、100【分析】根据Rt△ABC中∠B=50°,推出∠BCA=40°,根据旋转的性质可知,AC=AC1,∠BCA=∠C1=40°,求出∠CAC1的度数,即可求出∠BAB1的度数.【详解】∵Rt△ABC中∠B=50°,∴∠BCA=40°,∵△ABC绕直角顶点A顺时针旋转得到△ADE.当点C在B1C1边所在直线上,∴∠C1=∠BCA=40°,AC=AC1,∠CAB=∠C1AB1,∴∠ACC1=∠C1=40°,∴∠BAB1=∠CAC1=100°,故答案为:100.【点睛】本题考查了旋转的性质和等腰三角形的判定和性质,熟练掌握其判定和性质是解题的关键.三、解答题(共78分)19、(1);(2)公平,见解析【分析】(1)用列表法或树状图法表示出所有可能出现的结果,进而求出3枚硬币同时正面朝上的概率.(2)求出小张获得1分;小王得1分的概率,再判断游戏的公平性.【详解】解:(1)用树状图表示所有可能出现的情况如下:∴P(3枚硬币同时正面朝上)=;(2)公平,所有面值出现的情况如图所示:∵P(小张获得1分),P(小王得1分),∴P(小张获得1分)=P(小王得1分),因此对于他们来说是公平的.【点睛】本题考查了树状图和概率计算公式,解决本题的关键是正确理解题意,熟练掌握树状图的画法和概率的计算公式.20、(1)t=1;(2)t=2.4或;(3)△PQD的面积不能为1,理由见解析.【分析】(1)△PQD的两直角边分别用含t的代数式表示,由△PQD的面积为5得到关于t的方程,由此可解得t的值;(2)设△PQD与相似△ABC,由图形形状考虑可知有两种可能性,对两种可能性分别给予讨论可以求得答案;(3)与(1)类似,可以用含t的表达式表示△PQD的面积,令其等于1,由所得方程解的情况可以作出判断.【详解】因为四边形ABCD是矩形,所以AB=CD=6,BC=AD=8,(1)S△PQD=解得:t1=1t2=5(舍去)(2)①当时△PDQ~△ABC即得t=2.4②当时△PQD̰~△CBA即得;(3)△PQD的面积为1时,,此方程无实数根,即△PQD的面积不能为1.【点睛】本题综合考查三角形相似、面积计算与动点几何问题,利用方程的思想方法解题是关键所在.21、不需要采取紧急措施,理由详见解析.【分析】连接OA′,OA.设圆的半径是R,则ON=R−4,OM=R−1.根据垂径定理求得AM的长,在直角三角形AOM中,根据勾股定理求得R的值,在直角三角形A′ON中,根据勾股定理求得A′N的值,再根据垂径定理求得A′B′的长,从而作出判断.【详解】设圆弧所在圆的圆心为,连结,,如图所示设半径为则由垂径定理可知,∵,∴,且在中,由勾股定理可得即,解得∴在中,由勾股定理可得∴∴不需要采取紧急措施.【点睛】此类题综合运用了勾股定理和垂径定理,解题的关键是熟知垂径定理的应用.22、(问题呈现)相等的弧所对的弦相等;同弧所对的圆周角相等;有两组边及其夹角分别对应相等的两个三角形全等;(理解运用)1;(变式探究)DB=CD+BA;证明见解析;(实践应用)1或.【分析】(问题呈现)根据圆的性质即可求解;(理解运用)CD=DB+BA,即CD=6﹣CD+AB,即CD=6﹣CD+4,解得:CD=5,即可求解;(变式探究)证明△MAB≌△MGB(SAS),则MA=MG,MC=MG,又DM⊥BC,则DC=DG,即可求解;(实践应用)已知∠D1AC=45°,过点D1作D1G1⊥AC于点G1,则CG1′+AB=AG1,所以AG1=(6+2)=1.如图∠D2AC=45°,同理易得AD2=.【详解】(问题呈现)①相等的弧所对的弦相等②同弧所对的圆周角相等③有两组边及其夹角分别对应相等的两个三角形全等故答案为:相等的弧所对的弦相等;同弧所定义的圆周角相等;有两组边及其夹角分别对应相等的两个三角形全等;(理解运用)CD=DB+BA,即CD=6﹣CD+AB,即CD=6﹣CD+4,解得:CD=5,BD=BC﹣CD=6﹣5=1,故答案为:1;(变式探究)DB=CD+BA.证明:在DB上截去BG=BA,连接MA、MB、MC、MG,∵M是弧AC的中点,∴AM=MC,∠MBA=∠MBG.又MB=MB∴△MAB≌△MGB(SAS)∴MA=MG∴MC=MG,又DM⊥BC,∴DC=DG,AB+DC=BG+DG,即DB=CD+BA;(实践应用)如图,BC是圆的直径,所以∠BAC=90°.因为AB=6,圆的半径为5,所以AC=2.已知∠D1AC=45°,过点D1作D1G1⊥AC于点G1,则CG1′+AB=AG1,所以AG1=(6+2)=1.所以AD1=1.如图∠D2AC=45°,同理易得AD2=.所以AD的长为1或.【点睛】本题考查全等三角形的判定(SAS)与性质、等腰三角形的性质和圆心角、弦、弧,解题的关键是掌握全等三角形的判定(SAS)与性质、等腰三角形的性质和圆心角、弦、弧.23、(1)证明见解析;(2)证明见解析.【分析】(1)由OD⊥ACOD为半径,根据垂径定理,即可得,又由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可证得BD平分∠ABC;(2)首先由OB=OD,易求得∠AOD的度数,又由OD⊥AC于E,可求得∠A的度数,然后由AB是⊙O的直径,根据圆周角定理,可得∠ACB=90°,继而可证得BC=OD.【详解】(1)∵OD⊥ACOD为半径,∴,∴∠CBD=∠ABD,∴BD平分∠ABC;(2)∵OB=OD,∴∠OBD=∠0DB=30°,∴∠AOD=∠OBD+∠ODB=30°+30°=60°,又∵OD⊥AC于E,∴∠OEA=90°,∴∠A=180°﹣∠OEA﹣∠AOD=180°﹣90°﹣60°=30°,又∵AB为⊙O的直径,∴∠ACB=90°,在Rt△ACB中,BC=AB,∵OD=AB,∴BC=OD.24、(1)垂径,勾股;(2)26寸;(3)或【分析】(1)由解题过程可知根据垂径定理求出AE的长,在Rt△OAE中根据勾股定理求出r的值,即可得到答案.
(2)连接OA,设OA=r寸,则OE=DE-r=25-r,再根据垂径定理求出AE的长,在Rt△OAE中根据勾股定理求出r的值,进而得出结论.
(3)当AE=OE时,△AEO是等腰直角三角形,则∠AOE=45°,∠AOB=90°,所以由圆周角定理推知弦AB所对圆周角的度数为45°或135°.【详解】解:(1)根据题意知,上述解题过程运用了垂径定理和勾股定理.
故答案是:垂径;勾股;
(2)连接OA,设OA=r寸,则OE=DE-r=(25-r)寸
∵AB⊥CD,AB=1尺,∴AE=AB=5寸
在Rt△OAE中,OA2=AE2+OE2,即r2=52+(25-r)2,解得r=13,
∴CD=2r=26寸
(2)∵AB⊥CD,
∴当AE=OE时,△AEO是等腰直角三角形,
∴∠AOE=45°,
∴∠AOB=2∠AOE=90°,
∴弦AB所对圆周角的度数为∠AOB=45°.
同理,优弧AB所对圆周角的度数为135°.
故答案是:45°或135°.【点睛】此题考查圆的综合题,圆周角定理,垂径定理,勾股定理,等腰直角三角形的判定与性质,综合性较强,解题关键在于需要我们熟练各部分的内容,要注意将所学知识贯穿起来.25、(1),;(2),推导过程见解析;(3),;(4)①;②
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度演出场地租赁合同
- 2024版办公场地租赁合同定制
- 2024年度知识产权许可合同:专利技术在新能源汽车领域的授权
- 《2022冬奥会背景下张家口市滑雪场经营管理现状及对策研究》
- 关于汽车租赁合同模板
- 《我国商业银行理财产品质押融资制度探究》
- 红木购销简单的合同范本
- 保安合同到期,续签合同工作范文
- 2024年度影视器材租赁及拍摄服务合同2篇
- 2024年度赠与合同:慈善机构向贫困地区捐赠物资的协议
- 小学《道德与法治》课堂教学生活化的研究课题实施方案
- 提高地下车库防水层铺设一次验收合格率(QC成果)
- 光伏并网逆变器调试报告(正式版)
- 《英语期中家长会》PPT课件.ppt
- 化工安全隐患大排查内容
- 月亮的味道精品(课堂PPT)
- 中英文版送货单
- XX制药厂生产废水处理设计方案
- 铁路超限货物运输线路建筑限界管理规定
- 广东医械所国家中心检验报告(模板)
- 超声腹部检查手法图解(课堂PPT)
评论
0/150
提交评论