版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.连接对角线相等的任意四边形各边中点得到的新四边形的形状是()A.正方形 B.菱形 C.矩形 D.平行四边形2.某水果园2017年水果产量为50吨,2019年水果产量为70吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为,则根据题意可列方程为()A. B.C. D.3.下列图形中一定是相似形的是()A.两个菱形 B.两个等边三角形 C.两个矩形 D.两个直角三角形4.如图,在中,点,分别在,边上,,,若,,则线段的长为()A. B. C. D.55.如图,点A、B、C是⊙0上的三点,若∠OBC=50°,则∠A的度数是()A.40° B.50° C.80° D.100°6.下列一元二次方程中,有一个实数根为1的一元二次方程是()A.x2+2x-4=0 B.x2-4x+4=0C.x2+4x+10=0 D.x2+4x-5=07.用配方法解方程,下列配方正确的是()A. B. C. D.8.在ABC中,∠C=90°,AB=5,BC=4,以A为圆心,以3为半径画圆,则点C与⊙A的位置关系是()A.在⊙A外 B.在⊙A上 C.在⊙A内 D.不能确定9.如图,AD是△ABC的中线,点E在AD上,AD=4DE,连接BE并延长交AC于点F,则AF:FC的值是()A.3:2 B.4:3 C.2:1 D.2:310.把抛物线的图象绕着其顶点旋转,所得抛物线函数关系式是()A. B. C. D.11.如图,AC,BE是⊙O的直径,弦AD与BE交于点F,下列三角形中,外心不是点O的是()A.△ABE B.△ACF C.△ABD D.△ADE12.如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P、Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,直线y=x﹣2与x轴、y轴分别交于点A和点B,点C在直线AB上,且点C的纵坐标为﹣1,点D在反比例函数y=的图象上,CD平行于y轴,S△OCD=,则k的值为________.14.如图,Rt△ABC中,∠ACB=90°,AC=BC=4,D为线段AC上一动点,连接BD,过点C作CH⊥BD于H,连接AH,则AH的最小值为_____.15.如图,P是反比例函数图象在第二象限上一点,且矩形PEOF的面积是3,则反比例函数的解析式为___________.16.抛物线y=x2﹣4x+3与x轴交于A、B,与y轴交于C,则△ABC的面积=__.17.分式方程=1的解为_____18.已知二次函数y=a(x+3)2﹣b(a≠0)有最大值1,则该函数图象的顶点坐标为_____.三、解答题(共78分)19.(8分)如图,点A、B、C、D是⊙O上的四个点,AD是⊙O的直径,过点C的切线与AB的延长线垂直于点E,连接AC、BD相交于点F.(1)求证:AC平分∠BAD;(2)若⊙O的半径为,AC=6,求DF的长.20.(8分)2019年鞍山市出现了猪肉价格大幅上涨的情况,经过对我市某猪肉经销商的调查发现,当猪肉售价为60元/千克时,每天可以销售80千克,日销售利润为1600元(不考虑其他因素对利润的影响):售价每上涨1元,则每天少售出2千克;若设猪肉售价为x元/千克,日销售量为y千克.(1)求y关于x的函数解析式(不要求写出自变量的取值范围);(2)若物价管理部门规定猪肉价格不高于68元/千克,当售价是多少元/千克时,日销售利润最大,最大利润是多少元.21.(8分)如图,PA,PB是圆O的切线,A,B是切点,AC是圆O的直径,∠BAC=25°,求∠P的度数.22.(10分)如图1,在矩形ABCD中,AE⊥BD于点E.(1)求证:BEBC=AECD.(2)如图2,若点P是边AD上一点,且PE⊥EC,求证:AEAB=DEAP.23.(10分)如图,在网格纸中,、都是格点,以为圆心,为半径作圆,用无刻度的直尺完成以下画图:(不写画法)(1)在圆①中画圆的一个内接正六边形;(2)在图②中画圆的一个内接正八边形.24.(10分)如图,在Rt△ABC中,∠A=90°,AB=20cm,AC=15cm,在这个直角三角形内有一个内接正方形,正方形的一边FG在BC上,另两个顶点E、H分别在边AB、AC上.(1)求BC边上的高;(2)求正方形EFGH的边长.25.(12分)如图,中,,,平分,交轴于点,点是轴上一点,经过点、,与轴交于点,过点作,垂足为,的延长线交轴于点,(1)求证:为的切线;(2)求的半径.26.如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,其边长为2,点A,点C分别在轴,轴的正半轴上.函数的图象与CB交于点D,函数(为常数,)的图象经过点D,与AB交于点E,与函数的图象在第三象限内交于点F,连接AF、EF.(1)求函数的表达式,并直接写出E、F两点的坐标.(2)求△AEF的面积.
参考答案一、选择题(每题4分,共48分)1、B【分析】先根据三角形的中位线定理和平行四边形的判定定理证得此四边形为平行四边形,再判断一组邻边相等,所以根据菱形的定义可知该中点四边形是菱形.【详解】如图所示,连接AC、BD,
∵E、F、G、H分别为各边的中点,
∴HG、EF分别为△ACD与△ABC的中位线,
∴HG∥AC∥EF,,
∴四边形EFGH是平行四边形;同理可得,,∵AC=BD,
∴EH=GH,
∴四边形EFGH是菱形;
故选:B.【点睛】本题考查的是三角形中位线定理,即三角形的中位线平行于底边且等于底边的一半.解答此题的关键是根据题意画出图形,利用数形结合思想解答.2、B【分析】根据2019年的产量=2017年的产量×(1+年平均增长率)2,即可列出方程.【详解】解:根据题意可得,2018年的产量为50(1+x),
2019年的产量为50(1+x)(1+x)=50(1+x)2,
即所列的方程为:50(1+x)2=1.
故选:B.【点睛】此题主要考查了一元二次方程的应用,解题关键是要读懂题意,根据题目给出的条件,找出合适的等量关系,列出方程.3、B【分析】如果两个多边形的对应角相等,对应边的比相等,则这两个多边形是相似多边形.【详解】解:∵等边三角形的对应角相等,对应边的比相等,∴两个等边三角形一定是相似形,又∵直角三角形,菱形的对应角不一定相等,矩形的边不一定对应成比例,∴两个直角三角形、两个菱形、两个矩形都不一定是相似形,故选:B.【点睛】本题考查了相似多边形的识别.判定两个图形相似的依据是:对应边成比例,对应角相等,两个条件必须同时具备.4、C【解析】设,,所以,易证,利用相似三角形的性质可求出的长度,以及,再证明,利用相似三角形的性质即可求出得出,从而可求出的长度.【详解】解:设,,∴,∵,∴,∴,∴,∴,,∵,,∴,∵,∴,∴,设,,∴,∴,∴,∴,故选C.【点睛】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于中等题型.5、A【分析】在等腰三角形OBC中求出∠BOC,继而根据圆周角定理可求出∠A的度数.【详解】解:∵OC=OB,∴∠OCB=∠OBC=50°,∴∠BOC=180°﹣50°﹣50°=80°,∴∠A=∠BOC=40°;故选A.【点睛】本题考查在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半.6、D【分析】由题意,把x=1分别代入方程左边,然后进行判断,即可得到答案.【详解】解:当x=1时,分别代入方程的左边,则A、1+2=,故A错误;B、1-4+4=1,故B错误;C、1+4+10=15,故C错误;D、1+4-5=0,故D正确;故选:D.【点睛】本题考查了一元二次方程的解,解题的关键是分别把x=1代入方程进行解题.7、A【分析】通过配方法可将方程化为的形式.【详解】解:配方,得:,由此可得:,故选A.【点睛】本题重点考查解一元二次方程中的配方法,熟练掌握配方法的过程是解题的关键;注意当方程中二次项系数不为1时,要先将系数化为1后再进行移项和配方.8、B【分析】根据勾股定理求出AC的值,根据点与圆的位关系特点,判断即可.【详解】解:由勾股定理得:∵AC=半径=3,∴点C与⊙A的位置关系是:点C在⊙A上,故选:B.【点睛】本题考查了点与圆的位置关系定理和勾股定理等知识点的应用,点与圆(圆的半径是r,点到圆心的距离是d)的位置关系有3种:d=r时,点在圆上;d<r点在圆内;d>r点在圆外.掌握以上知识是解题的关键.9、A【分析】过点D作DG∥AC,根据平行线分线段成比例定理,得FC=1DG,AF=3DG,因此得到AF:FC的值.【详解】解:过点D作DG∥AC,与BF交于点G.
∵AD=4DE,
∴AE=3DE,
∵AD是△ABC的中线,∴∵DG∥AC∴,即AF=3DG,即FC=1DG,∴AF:FC=3DG:1DG=3:1.
故选:A.【点睛】本题考查了平行线分线段成比例定理,正确作出辅助线充分利用对应线段成比例的性质是解题的关键.10、B【分析】根据图象绕顶点旋转180°,可得函数图象开口方向相反,顶点坐标相同,可得答案.【详解】∵,
∴该抛物线的顶点坐标是(1,3),
∴在旋转之后的抛物线解析式为:.
故选:B.【点睛】本题考查了二次函数图象的平移和旋转,解决本题的关键是理解绕抛物线的顶点旋转180°得到新函数的二次项的系数符号改变,顶点不变.11、B【解析】试题分析:A.OA=OB=OE,所以点O为△ABE的外接圆圆心;B.OA=OC≠OF,所以点不是△ACF的外接圆圆心;C.OA=OB=OD,所以点O为△ABD的外接圆圆心;D.OA=OD=OE,所以点O为△ADE的外接圆圆心;故选B考点:三角形外心12、C【解析】如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1交⊙O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1﹣OQ1,求出OP1,如图当Q2在AB边上时,P2与B重合时,P2Q2最大值=5+3=8,由此不难解决问题.【详解】如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1,交⊙O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1﹣OQ1.∵AB=10,AC=8,BC=6,∴AB2=AC2+BC2,∴∠C=20°.∵∠OP1B=20°,∴OP1∥AC.∵AO=OB,∴P1C=P1B,∴OP1AC=4,∴P1Q1最小值为OP1﹣OQ1=1,如图,当Q2在AB边上时,P2与B重合时,P2Q2经过圆心,经过圆心的弦最长,P2Q2最大值=5+3=8,∴PQ长的最大值与最小值的和是2.故选C.【点睛】本题考查了切线的性质、三角形中位线定理等知识,解题的关键是正确找到点PQ取得最大值、最小值时的位置,属于中考常考题型.二、填空题(每题4分,共24分)13、1【详解】试题分析:把x=2代入y=x﹣2求出C的纵坐标,得出OM=2,CM=1,根据CD∥y轴得出D的横坐标是2,根据三角形的面积求出CD的值,求出MD,得出D的纵坐标,把D的坐标代入反比例函数的解析式求出k即可.解:∵点C在直线AB上,即在直线y=x﹣2上,C的横坐标是2,∴代入得:y=×2﹣2=﹣1,即C(2,﹣1),∴OM=2,∵CD∥y轴,S△OCD=,∴CD×OM=,∴CD=,∴MD=﹣1=,即D的坐标是(2,),∵D在双曲线y=上,∴代入得:k=2×=1.故答案为1.考点:反比例函数与一次函数的交点问题.点评:本题考查了反比例函数与一次函数的交点问题、一次函数、反比例函数的图象上点的坐标特征、三角形的面积等知识点,通过做此题培养了学生的计算能力和理解能力,题目具有一定的代表性,是一道比较好的题目.14、2﹣2【分析】取BC中点G,连接HG,AG,根据直角三角形的性质可得HG=CG=BG=BC=2,根据勾股定理可求AG=2,由三角形的三边关系可得AH≥AG﹣HG,当点H在线段AG上时,可求AH的最小值.【详解】解:如图,取BC中点G,连接HG,AG,∵CH⊥DB,点G是BC中点∴HG=CG=BG=BC=2,在Rt△ACG中,AG==2在△AHG中,AH≥AG﹣HG,即当点H在线段AG上时,AH最小值为2﹣2,故答案为:2﹣2【点睛】本题考查了动点问题,解决本题的关键是熟练掌握直角三角形中勾股定理关系式.15、【分析】根据从反比例函数的图象上任意一点向坐标轴作垂线段,垂线段和坐标轴所围成的矩形的面积是,且保持不变,进行解答即可.【详解】由题意得,∵反比例函数图象在第二象限∴∴反比例函数的解析式为y=-.【点睛】本题属于基础应用题,只需学生熟练掌握反比例函数k的几何意义,即可完成.16、1【分析】先根据题意求出AB的长。再得到C点坐标,故可求解.【详解】解:y=0时,0=x2﹣4x+1,解得x1=1,x2=1∴线段AB的长为2,∵与y轴交点C(0,1),∴以AB为底的△ABC的高为1,∴S△ABC=×2×1=1,故答案为:1.【点睛】此题主要考查二次函数与几何综合,解题的关键是熟知函数与坐标轴交点的求解方法.17、x=0.1【解析】分析:方程两边都乘以最简公分母,化为整式方程,然后解方程,再进行检验.详解:方程两边都乘以2(x2﹣1)得,8x+2﹣1x﹣1=2x2﹣2,解得x1=1,x2=0.1,检验:当x=0.1时,x﹣1=0.1﹣1=﹣0.1≠0,当x=1时,x﹣1=0,所以x=0.1是方程的解,故原分式方程的解是x=0.1.故答案为:x=0.1点睛:本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.18、(﹣3,1)【分析】根据二次函数y=a(x-h)2+k(a≠0)的顶点坐标是(h,k),即可求解.【详解】解:∵二次函数y=a(x+3)2﹣b(a≠0)有最大值1,∴﹣b=1,根据二次函数的顶点式方程y=a(x+3)2﹣b(a≠0)知,该函数的顶点坐标是:(﹣3,﹣b),∴该函数图象的顶点坐标为(﹣3,1).故答案为:(﹣3,1).【点睛】本题考查了二次函数的性质,解答该题时,需熟悉二次函数的顶点式y=a(x-h)2+k中的h、k所表示的意义.三、解答题(共78分)19、(1)证明见解析;(2).【分析】(1)连接OC,先证明OC∥AE,从而得∠OCA=∠EAC,再利用OA=OC得∠OAC=∠OCA,等量代换即可证得答案;(2)设OC交BD于点G,连接DC,先证明△ACD∽△AEC,从而利用相似三角形的性质解得,再利用=cos∠FDC,代入相关线段的长可求得DF.【详解】(1)证明:如图,连接OC∵过点C的切线与AB的延长线垂直于点E,∴OC⊥CE,CE⊥AE∴OC∥AE∴∠OCA=∠EAC∵OA=OC∴∠OAC=∠OCA∴∠OAC=∠EAC,即AC平分∠BAD;(2)如图,设OC交BD于点G,连接DC∵AD为直径∴∠ACD=90°,∠ABD=90°∵CE⊥AE∴DB∥CE∵OC⊥CE∴OC⊥BD∴DG=BG∵∠OAC=∠EAC,∠ACD=90°=∠E∴△ACD∽△AEC∴∵⊙O的半径为,AC=6∴AD=7,∴∴易得四边形BECG为矩形∴DG=BG=∵=cos∠FDC∴解得:∴DF的长为.【点睛】本题考查相似三角形的性质,借助辅助线,判定△ACD∽△AEC,再根据相似三角形的性质求解.20、(1)y=200﹣2x;(2)售价是68元/千克时,日销售利润最大,最大利润是1元【分析】(1)根据售价每上涨1元,则每天少售出2千克即可列出函数关系式;(2)根据(1)所得关系式,销售利润=每千克的利润×销售量列出二次函数关系式,再求出最值即可.【详解】解:(1)根据题意,得设猪肉进价为a元/千克,(60﹣a)×80=1600,解得a=40,y=80﹣2(x﹣60)=200﹣2x.答:y与x的函数解析式为:y=200﹣2x.(2)设售价为x元时,日销售利润为w元,根据题意,得w=(x﹣40)(200﹣2x)=﹣2x2+280x﹣8000;=﹣2(x﹣70)2+1800∵﹣2<0,当x<70时,w随x的增大而增大,∵物价管理部门规定猪肉价格不高于68元/千克,∴x=68时,w有最大值,最大值为1.答:当售价是68元/千克时,日销售利润最大,最大利润是1元.【点睛】本题考查了二次函数的应用,解决本题的关键是掌握销售问题的数量关系.21、∠P=50°【解析】根据切线性质得出PA=PB,∠PAO=90°,求出∠PAB的度数,得出∠PAB=∠PBA,根据三角形的内角和定理求出即可.【详解】∵PA、PB是⊙O的切线,∴PA=PB,∴∠PAB=∠PBA,∵AC是⊙O的直径,PA是⊙O的切线,∴AC⊥AP,∴∠CAP=90°,∵∠BAC=25°,∴∠PBA=∠PAB=90°-25°=65°,∴∠P=180°-∠PAB-∠PBA=180°-65°-65°=50°.【点睛】本题考查了切线长定理,切线性质,三角形的内角和定理,等腰三角形的性质的应用,主要考查学生运用定理进行推理和计算的能力,题目具有一定的代表性,难度适中,熟记切线的性质定理是解题的关键.22、(1)详见解析;(2)详见解析.【分析】(1)根据两角对应相等证,由对应边成比例得比例式,化等积式即可;(2)根据两角对应相等证,由对应边成比例得比例式后化等积式,再由AB=CD进行等量代换即可得结论.【详解】解:(1)∵四边形ABCD是矩形,∴∠ABC=∠C=90°,∵AE⊥BD∴∵∠AEB=∠C=90°(2)又【点睛】本题考查相似三角形的判定及性质,正确找出相似条件是解答此题的关键.23、(1)见解析;(2)见解析【分析】(1)设AO的延长线与圆交于点D,根据正六边形的性质,点D即为正六边形的一个顶点,且正六边形的边长等于圆的半径,根据垂直平分线的性质即可确定其它的顶点;(2)先求出内接八边形的中心角,然后根据正方形的性质即可找到各个顶点.【详解】(1)设AO的延长线与圆交于点D,根据圆的内接正六边形的性质,点D即为正六边形的一个顶点,且正六边形的边长等于圆的半径,即OB=AB,故在图中找到AO的中垂线与圆的交点即为正六边形的顶点B和F;同理:在图中找到OD的中垂线与圆的交点即为正六边形的顶点C和E,连接AB、BC、CD、DE、EF、FA,如图①,正六边形即为所求.(2)圆的内接八边形的中心角为360°÷8=45°,而正方形的对角线与边的夹角也为45°∴在如②图所示的正方形OMNP中,连接对角线ON并延长,交圆于点B,此时∠AON=45°;∵∠NOP=45°,∴OP的延长线与圆的交点即为点C同理,即可确定点D、E、F、G、H的位置,顺次连接,如图②,正八边形即为所求.【点睛】此题考查的是画圆的内接正六边形和内接正八边形,掌握圆的内接正六边形和内接正八边形的性质和中心角的求法是解决此题的关键.24、(1)12cm;(2)【分析】(1)由勾股定理求出BC=25cm,再由三角形面积即可得出答案;(2)设正方形边长为x,证出△AEH∽△ABC,得出比例式,进而得出答案.【详解】解:(1)作AD⊥BC于D,交EH于O,如图所示:∵在Rt△ABC中,∠A=90°,AB=20
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度电梯安全知识竞赛组织与实施合同3篇
- 二零二五版矿山劳务合同范本:矿山安全生产监督协议3篇
- 基于2025年度财务软件系统的定制开发合同3篇
- 2025年度临时安保服务劳务合同实施细则4篇
- 2025年度光伏电站变压器供货与安装服务合同3篇
- 2025年度环保节能照明设备研发与推广合同3篇
- 2024-2025学年高中语文第一课走进汉语的世界3四方异声-普通话和方言练习含解析新人教版选修语言文字应用
- 2025年度水路货物运输货物保险理赔代理合同(GF定制版)
- 2025年校园食堂食品安全追溯原料采购管理服务合同3篇
- 二零二四年在建工业地产转让合同范本3篇
- 英语名著阅读老人与海教学课件(the-old-man-and-the-sea-)
- 学校食品安全知识培训课件
- 全国医学博士英语统一考试词汇表(10000词全) - 打印版
- 最新《会计职业道德》课件
- DB64∕T 1776-2021 水土保持生态监测站点建设与监测技术规范
- 中医院医院等级复评实施方案
- 数学-九宫数独100题(附答案)
- 理正深基坑之钢板桩受力计算
- 学校年级组管理经验
- 10KV高压环网柜(交接)试验
- 未来水电工程建设抽水蓄能电站BIM项目解决方案
评论
0/150
提交评论