版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.定义新运算:对于两个不相等的实数,,我们规定符号表示,中的较大值,如:.因此,;按照这个规定,若,则的值是()A.-1 B.-1或 C. D.1或2.如图,在矩形ABCD中,AB=4,BC=6,将矩形ABCD绕B逆时针旋转30°后得到矩形GBEF,延长DA交FG于点H,则GH的长为()A.8﹣4 B.﹣4 C.3﹣4 D.6﹣33.菱形的两条对角线长分别为60cm和80cm,那么边长是()A.60cm B.50cm C.40cm D.80cm4.以半径为1的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是()A. B. C. D.5.为坐标原点,点、分别在轴和轴上,的内切圆的半径长为()A. B. C. D.6.如图,在的正方形网格中,每个小正方形的边长都是,的顶点都在这些小正方形的顶点上,则的值为()A. B. C. D.7.在Rt△ABC中,AB=6,BC=8,则这个三角形的内切圆的半径是()A.5 B.2 C.5或2 D.2或-18.在一个不透明的布袋中,有红色、黑色、白色球共40个,它们除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在和,则布袋中白色球的个数可能是()A.24 B.18 C.16 D.69.关于x的一元二次方程有两个实数根,则k的取值范围在数轴上可以表示为()A. B.C. D.10.在Rt△ABC中,∠C=90°,AC=5,BC=12,则cosB的值为()A. B. C. D.二、填空题(每小题3分,共24分)11.菱形有一个内角为60°,较短的对角线长为6,则它的面积为_____.12.已知关于x的方程x2+3x+2a+1=0的一个根是0,则a=______.13.如图是一条水铺设的直径为2米的通水管道横截面,其水面宽1.6米,则这条管道中此时水深为______米.14.一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷的的点数大于4的概率是______________.15.已知如图,是的中位线,点是的中点,的延长线交于点A,那么=__________.16.如图,点是圆周上异于的一点,若,则_____.17.如图,在▱ABCD中,EF∥AB,DE:EA=2:3,EF=4,则CD的长为___________.18.一元二次方程x2﹣4=0的解是._________三、解答题(共66分)19.(10分)为了解九年级学生体育水平,学校对九年级全体学生进行了体育测试,并从甲、乙两班中各随机抽取名学生成绩(满分分)进行整理分析(成绩得分用表示,共分成四组:;,)下面给出了部分信息:甲班名学生体育成绩:乙班名学生体育成绩在组中的数据是:甲、乙两班被抽取学生体育成绩统计表平均数中位数众数方差甲班乙班根据以上信息,解答下列问题:,,;根据以上数据,你认为班(填“甲”或“乙”)体育水平更高,说明理由(两条理由):;.学校九年级学生共人,估计全年级体育成绩优秀的学生人数是多少?20.(6分)用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b=ab2+2ab+a.如:1☆3=1×32+2×1×3+1=16.(1)求(-2)☆3的值;(2)若=8,求a的值.21.(6分)解方程:3x2﹣4x+1=1.(用配方法解)22.(8分)如图,天星山山脚下西端A处与东端B处相距800(1+)米,小军和小明同时分别从A处和B处向山顶C匀速行走.已知山的西端的坡角是45°,东端的坡角是30°,小军的行走速度为米/秒.若小明与小军同时到达山顶C处,则小明的行走速度是多少?23.(8分)如图,在中,,,,求和的长.24.(8分)某种蔬菜的售价(元)与销售月份之间的关系如图所示,成本(元)与销售月份之间的关系如图所示.(图的图象是线段,图的图象是抛物线)(1)已知6月份这种蔬菜的成本最低,此时出售每千克的利润是多少元?(利润=售价成本)(2)设每千克该蔬菜销售利润为,请列出与之间的函数关系式,并求出哪个月出售这种蔬菜每千克的利润最大,最大利润是多少?(3)已知市场部销售该种蔬菜4、5两个月的总利润为22万元,且5月份的销售量比4月份的销售量多2万千克.4、5两个月的销售量分别是多少万千克?25.(10分)有四张正面分别标有数字1,2,3,4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1)随机抽取一张卡片,则抽到数字“2”的概率是___________;(2)从四张卡片中随机抽取2张卡片,请用列表或画树状图的方法求抽到“数字和为5”的概率.26.(10分)在精准脱贫期间,江口县委、政府对江口教育制定了目标,为了保证2018年中考目标的实现,对九年级进行了一次模拟测试,现对这次模拟测试的数学成绩进行了分段统计,统计如表,共有2500名学生参加了这次模拟测试,为了解本次考试成绩,从中随机抽取了部分学生的数学成绩x(得分均为整数,满分为100分)进行统计后得到下表,请根据表格解答下列问题:(1)随机抽取了多少学生?(2)根据表格计算:a=;b=.分组频数频率x<30140.0730≤x<6032b60≤x<90a0.6290≤x300.15合计﹣1(3)设60分(含60)以上为合格,请据此估计我县这次这次九年级数学模拟测试成绩合格的学生有多少名?
参考答案一、选择题(每小题3分,共30分)1、B【分析】分x>0和0x<0两种情况分析,利用公式法解一元二次方程即可.【详解】解:当x>0时,有,解得,(舍去),
x<0时,有,解得,x1=−1,x2=2(舍去).故选B.【点睛】此题主要考查了一元二次方程的解法,解题的关键是掌握新定义以及掌握因式分解法以及公式法解方程的方法步骤,掌握降次的方法,把二次化为一次,再解一元一次方程.2、A【分析】作辅助线,构建直角△AHM,先由旋转得BG的长,根据旋转角为30°得∠GBA=30°,利用30°角的三角函数可得GM和BM的长,由此得AM和HM的长,相减可得结论.【详解】如图,延长BA交GF于M,由旋转得:∠GBA=30°,∠G=∠BAD=90°,BG=AB=4,∴∠BMG=60°,tan∠30°==,∴,∴GM=,∴BM=,∴AM=﹣4,Rt△HAM中,∠AHM=30°,∴HM=2AM=﹣8,∴GH=GM﹣HM=﹣(﹣8)=8﹣4,故选:A.【点睛】考查了矩形的性质、旋转的性质、特殊角的三角函数及直角三角形30°的性质,解题关键是直角三角形30°所对的直角边等于斜边的一半及特殊角的三角函数值.3、B【分析】根据菱形的对角线互相垂直平分求出OA、OB的长,再利用勾股定理列式求出边长AB,然后根据菱形的周长公式列式进行计算即可得解.【详解】解:如图,∵菱形的两条对角线的长是6cm和8cm,∴OA=×80=40cm,OB=×60=30cm,又∵菱形的对角线AC⊥BD,∴AB==50cm,∴这个菱形的边长是50cm.故选B.【点睛】本题考查了菱形的性质,勾股定理的应用,主要利用了菱形的对角线互相垂直平分的性质.4、D【解析】由于内接正三角形、正方形、正六边形是特殊内角的多边形,可构造直角三角形分别求出边心距的长,由勾股定理逆定理可得该三角形是直角三角形,进而可得其面积.【详解】如图1,∵OC=1,∴OD=1×sin30°=;如图2,∵OB=1,∴OE=1×sin45°=;如图3,∵OA=1,∴OD=1×cos30°=,则该三角形的三边分别为:、、,∵()2+()2=()2,∴该三角形是以、为直角边,为斜边的直角三角形,∴该三角形的面积是,故选:D.【点睛】考查正多边形的外接圆的问题,应用边心距,半径和半弦长构成直角三角形,来求相关长度是解题关键。5、A【分析】先运用勾股定理求得的长,证得四边形为正方形,设半径为,利用切线长定理构建方程即可求解.【详解】如图,过内心C作CD⊥AB、CE⊥AO、CF⊥BO,垂足分别为D、E、F,∵,∴,,∵CE⊥AO、CF⊥BO,∴四边形为正方形,设半径为,则∵AB、AO、BO都是的切线,∴,,∴,即:,解得:,故选:A.【点睛】本题考查了切线长定理,勾股定理,证得四边形为正方形以及利用切线长定理构建方程是解题的关键.6、D【分析】过作于,首先根据勾股定理求出,然后在中即可求出的值.【详解】如图,过作于,则,AC==1..故选D.【点睛】本题考查了勾股定理的运用以及锐角三角函数,正确作出辅助线是解题的关键.7、D【解析】分AC为斜边和BC为斜边两种情况讨论.根据切线定理得过切点的半径垂直于三角形各边,利用面积法列式求半径长.【详解】第一情况:当AC为斜边时,如图,设⊙O是Rt△ABC的内切圆,切点分别为D,E,F,连接OC,OA,OB,∴OD⊥AC,OE⊥BC,OF⊥AB,且OD=OE=OF=r,在Rt△ABC中,AB=6,BC=8,由勾股定理得,,∵,∴,∴,∴r=2.第二情况:当BC为斜边时,如图,设⊙O是Rt△ABC的内切圆,切点分别为D,E,F,连接OC,OA,OB,∴OD⊥BC,OE⊥AC,OF⊥AB,且OD=OE=OF=r,在Rt△ABC中,AB=6,BC=8,由勾股定理得,,∵,∴,∴,∴r=.故选:D.【点睛】本题考查了三角形内切圆半径的求法及勾股定理,依据圆的切线性质是解答此题的关键.等面积法是求高度等线段长的常用手段.8、C【分析】先由频率之和为1计算出白球的频率,再由数据总数×频率=频数计算白球的个数.【详解】∵摸到红色球、黑色球的频率稳定在15%和45%,∴摸到白球的频率为1−15%−45%=40%,故口袋中白色球的个数可能是40×40%=16个.故选:C.【点睛】大量反复试验下频率稳定值即概率.关键是算出摸到白球的频率.9、B【分析】利用根的判别式和题意得到,求出不等式的解集,最后在数轴上表示出来,即可得出选项.【详解】解:∵关于x的方程有两个实数根,∴,解得:,在数轴上表示为:,故选:B.【点睛】本题考查了在数轴上表示不等式的解集,根的判别式的应用,注意:一元二次方程(为常数)的根的判别式为.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.特别注意:当时,方程有两个实数根,本题主要应用此知识点来解决.10、B【分析】根据勾股定理求出AB,根据余弦的定义计算即可.【详解】由勾股定理得,,则,故选:B.【点睛】本题考查的是锐角三角函数的定义,掌握锐角A的邻边b与斜边c的比叫做∠A的余弦是解题的关键.二、填空题(每小题3分,共24分)11、18【分析】根据菱形对角线垂直且互相平分,且每条对角线平分它们的夹角,即可得出菱形的另一条对角线长,再利用菱形的面积公式求出即可.【详解】解:如图所示:∵菱形有一个内角为60°,较短的对角线长为6,∴设∠BAD=60°,BD=6,∵四边形ABCD是菱形,∴∠BAC=∠DAC=30°,DO=BO=3,∴AO==3,∴AC=6,则它的面积为:×6×6=18.故答案为:18.【点睛】本题考查菱形的性质,熟练掌握菱形的面积公式以及对角线之间的关系是解题关键.12、-【分析】把x=0代入原方程可得关于a的方程,解方程即得答案.【详解】解:∵关于x的方程x2+3x+2a+1=0的一个根是x=0,∴2a+1=0,解得:a=-.故答案为:-.【点睛】本题考查了一元二次方程的解的定义,属于基础题型,熟练掌握基本知识是解题关键.13、【详解】解:作出弧AB的中点D,连接OD,交AB于点C.则OD⊥AB.AC=AB=0.8m.在直角△OAC中,OC===0.6m.则水深CD=OD-OC=1-0.6=0.4m.【点睛】此题涉及圆中求半径的问题,此类在圆中涉及弦长、半径、圆心角的计算的问题,常把半弦长,圆心角,圆心到弦距离转换到同一直角三角形中,然后通过直角三角形予以求解,常见辅助线是过圆心作弦的垂线.14、【解析】先求出点数大于4的数,再根据概率公式求解即可.【详解】在这6种情况中,掷的点数大于4的有2种结果,掷的点数大于4的概率为.故答案为:.【点睛】本题考查的是概率公式,熟记随机事件的概率事件可能出现的结果数所有可能出现的结果数的商是解答此题的关键.15、1:1【分析】连结AP并延长交BC于点F,则S△CPE=S△AEP,可得S△CPE:S△ADE=1:2,由DE//BC可得△ADE∽△ABC,可得S△ADE:S△ABC=1:4,则S△CPE:S△ABC=1:1.【详解】解:连结AP并延长交BC于点F,∵DE△ABC的中位线,∴E是AC的中点,∴S△CPE=S△AEP,∵点P是DE的中点,∴S△AEP=S△ADP,∴S△CPE:S△ADE=1:2,∵DE是△ABC的中位线,∴DE∥BC,DE:BC=1:2,∴△ADE∽△ABC,∴S△ADE:S△ABC=1:4,∴S△CPE:S△ABC=1:1.故答案为1:1.【点睛】本题考查三角形的中位线定理,相似三角形的判定和性质,三角形的面积等知识,解题的关键是熟练掌握基本知识.16、或【分析】根据题意,分为点B在优弧和劣弧两种可能进行分析,由圆周角定理,即可得到答案.【详解】解:当点B在优弧AC上时,有:∵∠AOC=140°,∴;当点B在劣弧AC上时,有∵,∴,∴;故答案为:或.【点睛】本题考查了圆周角定理,以及圆内接四边形的性质,解题的关键是熟练掌握同弧所对的圆周角等于圆心角的一半.17、1.【详解】解:∵EF∥AB,∴△DEF∽△DAB,∴EF:AB=DE:DA=DE:(DE+EA)=2:5,∴AB=1,∵在▱ABCD中AB=CD.∴CD=1.故答案为:1【点睛】本题考查①相似三角形的判定;②相似三角形的性质;③平行四边形的性质.18、x=±1【解析】移项得x1=4,∴x=±1.故答案是:x=±1.三、解答题(共66分)19、(1);(2)甲,详见解析;(3)估计全年级体育成绩优秀的学生约有人【分析】(1)根据C组的人数求得C组所占百分比,从而计算D组所占百分比求a,根据中位数和众数的概念求出c、d;(2)根据平均数和中位数的性质解答;(3)用样本估计总体,计算得答案.【详解】解:(1)C组所占百分比:×100%=30%,1-10%-20%-30%=40%,∴a=40,∵乙组20名学生的体育成绩的中位数是从小到大排序后,第10个和第11个数据的平均数,这两个数在C组,∴b=,∵在甲组20名学生的体育成绩中48出现的次数最多,∴c=48;(2)甲,理由如下:①甲班平均分43.8大于乙班平均分42.5,甲班平均水平更高,②甲班中位数45.5大于乙班中位数42.5,甲班中间水平更高;(答案不唯一,合理即可)(3)20×40%=8(人),(人),答:估计全年级体育成绩优秀的学生约有570人.【点睛】本题考查了扇形统计图,用样本估计总体及平均数、中位数、众数的计算和意义,利用统计图获取信息时,必须认真观察、分析,从中得到必要的信息是解题的关键.20、(1)-32;(2)a=1.【解析】分析:(1)原式利用题中的新定义化简,计算即可得到结果;(2)已知等式利用题中的新定义化简,即可求出a的值.详解:(1)(-2)☆3=-2×32+2×(-2)×3+(-2)=-32;(2)==8a+8=8,解得:a=1.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.21、x1=1,x2=【分析】首先把系数化为1,移项,把常数项移到等号的右侧,然后在方程的左右两边同时加上一次项系数的一半,即可使左边是完全平方公式,右边是常数项,即可求解.【详解】3x2﹣4x+1=13(x2﹣x)+1=1(x﹣)2=∴x﹣=±∴x1=1,x2=【点睛】本题考查解一元二次方程的方法,解题的关键是熟练掌握用配方法解一元二次方程的一般步骤.22、1米/秒【解析】分析:过点C作CD⊥AB于点D,设AD=x米,小明的行走速度是a米/秒,根据直角三角形的性质用x表示出AC与BC的长,再根据小明与小军同时到达山顶C处即可得出结论.本题解析:解:过点C作CD⊥AB于点D.设AD=x米,小明的行走速度是a米/秒.∵∠A=45°,CD⊥AB,∴AD=CD=x米,∴AC=x(米).在Rt△BCD中,∵∠B=30°,∴BC==2x(米).∵小军的行走速度为米/秒,若小明与小军同时到达山顶C处,∴=,解得a=1.答:小明的行走速度是1米/秒.23、,【分析】作CD⊥AB于D.在Rt△BDC求出CD、BD,在Rt△ACD中求出AD、AC即可解决问题.【详解】解:如图,过点作于点,在中,,,,在中,,∴,,∴.【点睛】本题考查解直角三角形,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.24、(1)6月份出售这种蔬菜每千克的利润是2元;(2)P=,5月份出售这种蔬菜,每千克的收益最大为元;(3)4月份的销售量为40000千克,5月份的销售量为60000千克.【分析】(1)找出x=6时,y1、y2的值,根据利润=售价-成本进行计算即可;(2)利用待定系数法分别求出y1、y2关于x的函数关系式,然后根据P=y1-y2得到关于x的函数关系式,然后利用二次根式的性质进行求解即可;(3)求出当x=4时,P的值,设4月份的销售量为t千克,则5月份的销售是为(t+20000)千克,根据总利润=每千克利润×销售数量,即可得出关于t的方程,解方程即可求得答案.【详解】(1)当x=6时,y1=3,y2=1,∵y1-y2=3-1=2,∴6月份出售这种蔬菜每千克的利润是2元;(2)设y1=mx+n,y2=a(x-6)2+1,将(3,5)、(6,3)分别代入y1=mx+n,得,解得:,∴;将(3,4)代入y2=a(x-6)2+1,得,4=a(3-6)2+1,解得:a=,∴,∴P==,∵,∴当x=5时,P取最大值,最大值为,即5月份出售这种蔬菜,每千克的收益最大,最大值为元;(3)当x=4时,P==2,设4月份的销售量为t千克,则5月份的销售量为(t+20000)千克,根据题意得:,解得:t=40000,∴t+20000=60000,答:4月份的销售量为40000千克,5月份的销售量为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年中国全瓷条梁数据监测研究报告
- 2024至2030年中国促销围裙数据监测研究报告
- 2024液体乳化产品运输协议
- 2021高考化学(浙江专用)二轮考点突破-专题三离子反应-
- 2025年城市更新项目物业移交及转型升级协议3篇
- 2024年食品行业销售代表劳动协议典范版
- 2025河南省安全员《B证》考试题库及答案
- 二零二五年度加油站环保检测与风险评估合同样本3篇
- 2025吉林建筑安全员A证考试题库及答案
- 2025甘肃省安全员C证考试题库
- 2024年新疆中考数学真题试卷及答案
- 2024年陕西省中考语文试卷附答案
- 化学与人类社会智慧树知到期末考试答案章节答案2024年内江师范学院
- 飞行模拟器飞行仿真系统建模与软件实现
- 《心理健康与职业生涯》开学第一课(教案)-【中职专用】中职思想政治《心理健康与职业生涯》(高教版2023·基础模块)
- 第六届石油工程设计大赛方案设计类钻完井单项组
- 中餐烹饪实训室安全隐患分析
- 2024年湖南高速铁路职业技术学院单招职业技能测试题库及答案解析
- 中医药养生保健服务方案设计
- 2024年菏泽单州市政工程集团有限公司招聘笔试参考题库附带答案详解
- 肺栓塞指南解读
评论
0/150
提交评论