




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.二次函数的最小值是()A.2 B.2 C.1 D.12.抛物线y=ax2+bx+c(a≠1)如图所示,下列结论:①abc<1;②点(﹣3,y1),(1,y2)都在抛物线上,则有y1>y2;③b2>(a+c)2;④2a﹣b<1.正确的结论有()A.4个 B.3个 C.2个 D.1个3.如下图形中既是中心对称图形,又是轴对称图形的是()A. B. C. D.4.抛物线的对称轴是()A.直线 B.直线C.直线 D.直线5.用配方法解方程,下列配方正确的是()A. B.C. D.6.如图,已知与位似,位似中心为点且的面积与面积之比为,则的值为()A. B.C. D.7.在同一直角坐标系中,函数y=kx2﹣k和y=kx+k(k≠0)的图象大致是()A. B. C. D.8.如图是拦水坝的横断面,,斜面坡度为,则斜坡的长为()A.米 B.米 C.米 D.24米9.在一块半径为的圆形钢板中裁出一个最大的等边三角形,此等边三角形的边长()A. B. C. D.10.在同一直角坐标系中,函数y=kx﹣k与y=(k≠0)的图象大致是()A. B.C. D.11.二次函数的图象向上平移个单位得到的图象的解析式为()A. B. C. D.12.下列反比例函数图象一定在第一、三象限的是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,在菱形ABCD中,AE⊥BC,E为垂足,若cosB=,EC=2,P是AB边上的一个动点,则线段PE的长度的最小值是________.14.如图,在边长为的正方形中,点为靠近点的四等分点,点为中点,将沿翻折得到连接则点到所在直线距离为________________.15.若是关于的一元二次方程,则________.16.如图,正△ABO的边长为2,O为坐标原点,A在轴上,B在第二象限.△ABO沿轴正方向作无滑动的翻滚,经第一次翻滚后得△A1B1O,则翻滚10次后AB中点M经过的路径长为________17.在实数范围内分解因式:-1+9a4=____________________。18.将一副三角尺如图所示叠放在一起,则的值是.三、解答题(共78分)19.(8分)课本上有如下两个命题:命题1:圆的内接四边形的对角互补.命题2:如果一个四边形两组对角互补,那么该四边形的四个顶点在同一个圆上.请判断这两个命题的真、假?并选择其中一个说明理由.20.(8分)“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》,意思是说:如图,矩形城池ABCD,东边城墙AB长9里,南边城墙AD长7里,东门点E,南门点F分别是AB、AD的中点,EG⊥AB,FH⊥AD,EG=15里,HG经过点A,问FH多少里?21.(8分)如图,在平面直角坐标系中,抛物线经过点,交轴于点.(1)求抛物线的解析式.(2)点是线段上一动点,过点作垂直于轴于点,交抛物线于点,求线段的长度最大值.22.(10分)如图所示,在方格纸中,△ABC的三个顶点及D,E,F,G,H五个点分别位于小正方形的顶点上.(1)现以D,E,F,G,H中的三个点为顶点画三角形,在所画的三角形中与△ABC不全等但面积相等的三角形是(只需要填一个三角形);(2)先从D,E两个点中任意取一个点,再从F,G,H三个点中任意取两个不同的点,以所取的这三个点为顶点画三角形,画树状图求所画三角形与△ABC面积相等的概率.23.(10分)如图,△ABC.(1)尺规作图:①作出底边的中线AD;②在AB上取点E,使BE=BD;(2)在(1)的基础上,若AB=AC,∠BAC=120°,求∠ADE的度数.24.(10分)一名大学毕业生利用“互联网+”自主创业,销售一种产品,这种产品的成本价为80元/件,经市场调查发现,该产品的日销售量(单位:件)与销售单价(单位:元/件)之间满足一次函数关系,如图所示.(1)求与之间的函数解析式,并写出自变量的取值范围;(2)求每天的销售利润(单位:元)与销售单价之间的函数关系式,并求出每件销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)这名大学生计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?25.(12分)如图,C地在A地的正东方向,因有大山阻隔,由A地到C地需要绕行B地,已知B地位于A地北偏东67°方向,距离A地520km,C地位于B地南偏东30°方向,若打通穿山隧道,建成两地直达高铁,求A地到C地之间高铁线路的长(结果保留整数)(参考数据:sin67°≈0.92;cos67°≈0.38;≈1.73)26.如图,把点以原点为中心,分别逆时针旋转,,,得到点,,.(1)画出旋转后的图形,写出点,,的坐标,并顺次连接、,,各点;(2)求出四边形的面积;(3)结合(1),若把点绕原点逆时针旋转到点,则点的坐标是什么?
参考答案一、选择题(每题4分,共48分)1、B【解析】试题分析:对于二次函数的顶点式y=a+k而言,函数的最小值为k.考点:二次函数的性质.2、B【分析】利用抛物线开口方向得到a>1,利用抛物线的对称轴在y轴的左侧得到b>1,利用抛物线与y轴的交点在x轴下方得到c<1,则可对①进行判断;通过对称轴的位置,比较点(-3,y1)和点(1,y2)到对称轴的距离的大小可对②进行判断;由于(a+c)2-b2=(a+c-b)(a+c+b),而x=1时,a+b+c>1;x=-1时,a-b+c<1,则可对③进行判断;利用和不等式的性质可对④进行判断.【详解】∵抛物线开口向上,∴a>1,∵抛物线的对称轴在y轴的左侧,∴a、b同号,∴b>1,∵抛物线与y轴的交点在x轴下方,∴c<1,∴abc<1,所以①正确;∵抛物线的对称轴为直线x=﹣,而﹣1<﹣<1,∴点(﹣3,y1)到对称轴的距离比点(1,y2)到对称轴的距离大,∴y1>y2,所以②正确;∵x=1时,y>1,即a+b+c>1,x=﹣1时,y<1,即a﹣b+c<1,∴(a+c)2﹣b2=(a+c﹣b)(a+c+b)<1,∴b2>(a+c)2,所以③正确;∵﹣1<﹣<1,∴﹣2a<﹣b,∴2a﹣b>1,所以④错误.故选:B.【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>1时,抛物线向上开口;当a<1时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(1,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>1时,抛物线与x轴有2个交点;△=b2-4ac=1时,抛物线与x轴有1个交点;△=b2-4ac<1时,抛物线与x轴没有交点.3、B【解析】根据中心对称图形的定义以及轴对称图形的定义进行判断即可得出答案.【详解】A.是轴对称图形,不是中心对称图形,故本选项错误;B.是轴对称图形,也是中心对称图形,故本选项正确;C.是轴对称图形,不是中心对称图形,故本选项错误;D.不是轴对称图形,是中心对称图形,故本选项错误.故选:B.【点睛】此题主要考查了中心对称图形与轴对称图形的定义,根据定义得出图形形状是解决问题的关键.4、C【解析】用对称轴公式即可得出答案.【详解】抛物线的对称轴,故选:C.【点睛】本题考查了抛物线的对称轴,熟记对称轴公式是解题的关键.5、C【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数的绝对值一半的平方.【详解】解:等式两边同时加上一次项系数的绝对值一半的平方22,,∴;故选:C.【点睛】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.6、A【分析】根据位似图形的性质得到AC:DF=3:1,AC∥DF,再证明∽,根据相似的性质进而得出答案.【详解】∵与位似,且的面积与面积之比为9:4,∴AC:DF=3:1,AC∥DF,∴∠ACO=∠DFO,∠CAO=∠FDO,∴∽,∴AO:OD=AC:DF=3:1.故选:A.【点睛】本题考查位似图形的性质,及相似三角形的判定与性质,注意掌握位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方.7、D【解析】试题分析:A、由一次函数y=kx+k的图象可得:k>0,此时二次函数y=kx2﹣kx的图象应该开口向上,错误;B、由一次函数y=kx+k图象可知,k>0,此时二次函数y=kx2﹣kx的图象顶点应在y轴的负半轴,错误;C、由一次函数y=kx+k可知,y随x增大而减小时,直线与y轴交于负半轴,错误;D、正确.故选D.考点:1、二次函数的图象;2、一次函数的图象8、B【解析】根据斜面坡度为1:2,堤高BC为6米,可得AC=12m,然后利用勾股定理求出AB的长度.【详解】解:∵斜面坡度为1:2,BC=6m,∴AC=12m,则,故选B.【点睛】本题考查了解直角三角形的应用,解答本题的关键是根据坡角构造直角三角形,利用三角函数的知识求解.9、D【分析】画出图形,作于点,利用垂径定理和等边三角形的性质求出AC的长即可得出AB的长.【详解】解:依题意得,连接,,作于点,∵,∴,,∴,∴.故选:D.【点睛】本题考查了圆的内接多边形,和垂径定理的使用,弄清题意准确计算是关键.10、B【分析】根据k的取值范围,分别讨论k>0和k<0时的情况,然后根据一次函数和反比例函数图象的特点进行选择正确答案.【详解】解:①当k>0时,一次函数y=kx﹣k经过一、三、四象限,反比例函数的的图象经过一、三象限,故B选项的图象符合要求,②当k<0时,一次函数y=kx﹣k经过一、二、四象限,反比例函数的的图象经过二、四象限,没有符合条件的选项.故选:B.【点睛】此题考查反比例函数的图象问题;用到的知识点为:反比例函数与一次函数的k值相同,则两个函数图象必有交点;一次函数与y轴的交点与一次函数的常数项相关.11、B【分析】直接根据“上加下减”的原则进行解答即可.【详解】由“上加下减”的原则可知,把二次函数y=x2的图象向上平移2个单位,得到的新图象的二次函数解析式是:y=x2+2.故答案选B.【点睛】本题考查了二次函数图象与几何变换,解题的关键是熟练的掌握二次函数图象与几何变换.12、A【分析】根据反比例函数的性质,函数若位于一、三象限,则反比例函数系数k>0,对各选项逐一判断即可.【详解】解:A、∵m2+1>0,∴反比例函数图象一定在一、三象限;B、不确定;
C、不确定;
D、不确定.
故选:A.【点睛】本题考查了反比例函数的性质,理解反比例函数的性质是解题的关键.二、填空题(每题4分,共24分)13、4.2【解析】设菱形ABCD的边长为x,则AB=BC=x,又EC=2,所以BE=x-2,因为AE⊥BC于E,所以在Rt△ABE中,cosB=,又cosB=于是=,解得x=1,即AB=1.所以易求BE=2,AE=6,当EP⊥AB时,PE取得最小值.故由三角形面积公式有:AB•PE=BE•AE,求得PE的最小值为4.2.点睛:本题考查了余弦函数在直角三角形中的运用、三角形面积的计算和最小值的求值问题,求PE的值是解题的关键14、【分析】延长交BC于点M,连接FM,延长交DA的延长线于点P,作DN⊥CP,先证明∽,利用相似的性质求出,然后证明∽,利用相似的性质求出EP,从而得到DP的长,再利用勾股定理求出CP的长,最后利用等面积法计算DN即可.【详解】如图,延长交BC于点M,连接FM,延长交DA的延长线于点P,作DN⊥CP,由题可得,,,∴,∵F为AB中点,∴,又∵FM=FM,∴≌(HL),∴,,由折叠可知,,∴,又∵∴,∴∽,∴,∵AD=4,E为四等分点,∴,∴,∴,∴,∵,∴,,∴∽,∴,即,∴EP=6,∴DP=EP+DE=7,在中,,∵,∴.故答案为:.【点睛】本题考查了折叠的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理以及等面积法等知识,较为综合,难度较大,重点在于作辅助线构造全等或相似三角形.15、1【分析】根据一元二次方程的定义,从而列出关于m的关系式,求出答案.【详解】根据题意可知:m+1≠0且|m|+1=2,解得:m=1,故答案为m=1.【点睛】本题主要考查了一元二次方程的定义,解本题的要点在于知道一元二次方程中二次项系数不能为0.16、(4+)【分析】根据题意先作B3E⊥x轴于E,观察图象可知为三次一个循环,求点M的运动路径,进而分析求得翻滚10次后AB中点M经过的路径长.【详解】解:如图作B3E⊥x轴于E,可知OE=5,B3E=,观察图象可知为三次一个循环,一个循环点M的运动路径为:,则翻滚10次后AB中点M经过的路径长为:.故答案为:(4+).【点睛】本题考查规律题,解题的关键是灵活运用弧长公式、等边三角形的性质等知识解决问题.17、【分析】连续利用2次平方差公式分解即可.【详解】解:.【点睛】此题考查了实数范围内分解因式,熟练掌握因式分解的方法是解本题的基础,注意检查分解要彻底.18、【解析】试题分析:∵∠BAC=∠ACD=90°,∴AB∥CD.∴△ABE∽△DCE.∴.∵在Rt△ACB中∠B=45°,∴AB=AC.∵在RtACD中,∠D=30°,∴.∴.三、解答题(共78分)19、命题一、二均为真命题,证明见解析.【分析】利用圆周角定理可证明命题正确;利用反证法可证明命题2正确.【详解】命题一、二均为真命题,命题1、命题2都是真命题.证明命题1:如图,四边形ABCD为⊙O的内接四边形,连接OA、OC,∵∠B=∠1,∠D=∠2,而∠1+∠2=360°,∴∠B+∠D=×360°=180°,即圆的内接四边形的对角互补.【点睛】本题考查了命题与定理:命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.20、1.05里【分析】首先根据题意得到△GEA∽△AFH,然后利用相似三角形的对应边的比相等列出比例式求得答案即可.【详解】∵EG⊥AB,FH⊥AD,HG经过点A,∴FA∥EG,EA∥FH,∴∠AEG=∠HFA=90°,∠EAG=∠FHA,∴△GEA∽△AFH,∴.∵AB=9里,AD=7里,EG=15里,∴AF=3.5里,AE=4.5里,∴,∴FH=1.05里.【点睛】此题主要考查相似三角形的应用,解题的关键是熟知相似三角形的判定定理.21、(1);(2)4.【分析】(1)根据A、B坐标可得抛物线两点式解析式,化为一般形式即可;(2)根据抛物线解析式可得C点坐标,利用待定系数法可得直线AC的解析式为y=-x+4,设点坐标为,则,用m表示出DF的长,配方为二次函数顶点式的形式,根据二次函数的性质求出DF的最大值即可.【详解】(1)∵拋物线经过点,∴∴拋物线的解析式为.(2)∵拋物线的解析式为,∴,设直线的解析式为y=kx+b,∴,∴,b=4,∴直线AC的解析式为设点坐标为,则∴=-(m-2)2+4,∴当m=2时,DF的最大值为4.【点睛】本题考查待定系数法求二次函数解析式及二次函数的最值,熟练掌握二次函数解析式的三种形式及二次函数的性质是解题关键.22、(1)△DFG或△DHF;(2).【分析】(1)、根据“同(等)底同(等)高的三角形面积相等”进行解答;(2)、画树状图求概率.【详解】(1)、的面积为:,只有△DFG或△DHF的面积也为6且不与△ABC全等,与△ABC不全等但面积相等的三角形是:△DFG或△DHF;(2)、画树状图如图所示:由树状图可知共有6种等可能结果,其中与△ABC面积相等的有3种,即△DHF,△DGF,△EGF,所以所画三角形与△ABC面积相等的概率P=答:所画三角形与△ABC面积相等的概率为.【点睛】本题综合考查了三角形的面积和概率.23、(1)①详见解析;②详见解析;(2)15°.【分析】(1)①作线段BC的垂直平分线可得BC的中点D,连接AD即可;②以B为圆心,BD为半径画弧交AB于E,点E即为所求.(2)根据题意利用等腰三角形的性质,三角形的内角和定理求解即可.【详解】解:(1)如图,线段AD,点E即为所求.(2)如图,连接DE.∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵BD=BE,∴∠BDE=∠BED=(180°﹣30°)=75°,∵AB=AC,BD=CD,∴AD⊥BC,∴∠ADB=90°,∴∠ADE=90°﹣∠ADE=90°﹣75°=15°.【点睛】本题考查作图-复杂作图,线段的垂直平分线的性质,等腰三角形的性质等知识,解题的关键是熟练掌握相关的基本知识.24、(1)();(2),每件销售单价为100元时,每天的销售利润最大,最大利润为2000元;(3)该产品的成本单价应不超过65元.【分析】(1)设y与x之间的函数解析式为:y=kx+b,根据题意列方程组即可得到结论;(2)根据题意得到合适解析式,然后根据二次函数的性质即可得到结论;(3)设产品的成本单价为b元,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 关于税务师考试的应用题试题及答案
- 2024物理学习策略分享试题及答案
- 收纳师考试的常见难点解析试题及答案
- 2024年统计师考试常见统计方法试题及答案
- 多媒体应用设计的职业伦理试题及答案
- 咖啡师顾客沟通技巧试题及答案
- 咖啡饮品视觉美学试题及答案
- 2024年秘书证考试备考试题及答案
- 受众分析与2024年记者证考试试题及答案
- 档案信息系统的设计与管理试题及答案
- 2024年福建省中考物理试题
- 浙江省J12共同体联盟校2023-2024学年八年级下学期期中科学试卷
- (盘扣式脚手架高支模)工程监理实施细则-
- 《化工和危险化学品生产经营单位重大生产安全事故隐患判定标准(试行)》解读课件
- 2023年3月云南专升本大模考《旅游学概论》试题及答案
- 2024年中国人工智能产业研究报告
- 医疗器械可用性工程注册审查指导原则(2024年第13号)
- HIV实验室操作规程
- 2024年中国科学技术大学创新班物理试题答案详解
- 油气长输管道管道下沟及回填施工及验收方案
- 信息科技课评分标准
评论
0/150
提交评论