




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,正方形网格中,每个小正方形的边长均为1个单位长度.,在格点上,现将线段向下平移个单位长度,再向左平移个单位长度,得到线段,连接,.若四边形是正方形,则的值是()A.3 B.4 C.5 D.62.如图是一个可以自由转动的转盘,转盘分成黑、白两种颜色指针的位置固定,转动的转盘停止后,指针恰好指向白色扇形的穊率为(指针指向OA时,当作指向黑色扇形;指针指OB时,当作指向白色扇形),则黑色扇形的圆心角∠AOB=()A.40° B.45° C.50° D.60°3.等腰三角形底角与顶角之间的函数关系是()A.正比例函数 B.一次函数 C.反比例函数 D.二次函数4.如图,在△ABC中,AB=2.2,BC=3.6,∠B=60°,将△ABC绕点A按逆时针方向旋转得到△ADE,若点B的对应点D恰好落在BC边上时,则CD的长为()A.1.5 B.1.4 C.1.3 D.1.25.已知点,如果把点绕坐标原点顺时针旋转后得到点,那么点的坐标为()A. B. C. D.6.如图,已知,是的中点,且矩形与矩形相似,则长为()A.5 B. C. D.67.已知点在线段上(点与点、不重合),过点、的圆记作为圆,过点、的圆记作为圆,过点、的圆记作为圆,则下列说法中正确的是()A.圆可以经过点 B.点可以在圆的内部C.点可以在圆的内部 D.点可以在圆的内部8.将下列多项式分解因式,结果中不含因式x﹣1的是()A.x2﹣1 B.x2+2x+1 C.x2﹣2x+1 D.x(x﹣2)﹣(x﹣2)9.如图,AC是⊙O的内接正四边形的一边,点B在弧AC上,且BC是⊙O的内接正六边形的一边.若AB是⊙O的内接正n边形的一边,则n的值为()A.6 B.8 C.10 D.1210.如图,是的直径,点是上两点,且,连接,过点作,交的延长线于点,垂足为,若,则的半径为()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,在△ABC中,∠ACB=90°,AC=6,AB=1.现分别以点A、点B为圆心,以大于AB相同的长为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交BC于点E.若将△BDE沿直线MN翻折得△B′DE,使△B′DE与△ABC落在同一平面内,连接B′E、B′C,则△B′CE的周长为_____.12.如图,菱形AD的边长为2,对角线AC、BD相交于点O,BD=2,分别以AB、BC为直径作半圆,则图中阴影部分的面积为__________.13.如图,是的直径,弦则阴影部分图形的面积为_________.14.已知,则的值为______.15.平面直角坐标系内的三个点A(1,-3)、B(0,-3)、C(2,-3),___确定一个圆.(填“能”或“不能”)16.已知1是一元二次方程的一个根,则p=_______.17.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,过点C作⊙O的切线交AB的延长线于点P,若∠P=40°,则∠ADC=____°.18.如果,那么的值为______.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,函数的图象与直线交于点A(3,m).(1)求k、m的值;(2)已知点P(n,n)(n>0),过点P作平行于轴的直线,交直线y=x-2于点M,过点P作平行于y轴的直线,交函数的图象于点N.①当n=1时,判断线段PM与PN的数量关系,并说明理由;②若PN≥PM,结合函数的图象,直接写出n的取值范围.20.(6分)如图,⊙为的外接圆,,过点的切线与的延长线交于点,交于点,.(1)判断与的位置关系,并说明理由;(2)若,求的长.21.(6分)如图,在梯形ABCD中,AD∥BC,AB∥DE,AF∥DC,E、F两点在BC上,且四边形AEFD是平行四边形.(1)AD与BC有何等量关系?请说明理由;(2)当AB=DC时,求证:四边形AEFD是矩形.22.(8分)如图,AB为半圆O的直径,点C在半圆上,过点O作BC的平行线交AC于点E,交过点A的直线于点D,且∠D=∠BAC(1)求证:AD是半圆O的切线;(2)求证:△ABC∽△DOA;(3)若BC=2,CE=,求AD的长.23.(8分)如图,在平面直角坐标系中,抛物线与轴交于,两点,与轴交于点,直线经过,两点,抛物线的顶点为,对称轴与轴交于点.(1)求此抛物线的解析式;(2)求的面积;(3)在抛物线上是否存在一点,使它到轴的距离为4,若存在,请求出点的坐标,若不存在,则说明理由.24.(8分)如图,在Rt△ABC中,∠ACB90°,∠ABC的平分线BD交AC于点D.(1)求作⊙O,使得点O在边AB上,且⊙O经过B、D两点(要求尺规作图,保留作图痕迹,不写作法);(2)证明AC与⊙O相切.25.(10分)如图,直径为AB的⊙O交的两条直角边BC,CD于点E,F,且,连接BF.(1)求证CD为⊙O的切线;(2)当CF=1且∠D=30°时,求⊙O的半径.26.(10分)如图,抛物线y=-x2+bx+3与x轴交于A,B两点,与y轴交于点C,其中点A(-1,0).过点A作直线y=x+c与抛物线交于点D,动点P在直线y=x+c上,从点A出发,以每秒个单位长度的速度向点D运动,过点P作直线PQ∥y轴,与抛物线交于点Q,设运动时间为t(s).(1)直接写出b,c的值及点D的坐标;(2)点E是抛物线上一动点,且位于第四象限,当△CBE的面积为6时,求出点E的坐标;(3)在线段PQ最长的条件下,点M在直线PQ上运动,点N在x轴上运动,当以点D、M、N为顶点的三角形为等腰直角三角形时,请求出此时点N的坐标.
参考答案一、选择题(每小题3分,共30分)1、A【分析】根据线段的平移规律可以看出,线段AB向下平移了1个单位,向左平移了2个单位,相加即可得出.【详解】解:根据线段的平移规律可以看出,线段AB向下平移了1个单位,向左平移了2个单位,得到A'B',则m+n=1.故选:A【点睛】本题考查的是线段的平移问题,观察图形时要考虑其中一点就行.2、B【分析】根据针恰好指向白色扇形的概率得到黑、白两种颜色的扇形的面积比为1:7,计算即可.【详解】解:∵指针恰好指向白色扇形的穊率为,∴黑、白两种颜色的扇形的面积比为1:7,∴∠AOB=×360°=45°,故选:B.【点睛】本题考查的知识点是求圆心角的度数,根据概率得出黑、白两种颜色的扇形的面积比为1:7是解此题的关键.3、B【解析】根据一次函数的定义,可得答案.【详解】设等腰三角形的底角为y,顶角为x,由题意,得x+2y=180,所以,y=﹣x+90°,即等腰三角形底角与顶角之间的函数关系是一次函数关系,故选B.【点睛】本题考查了实际问题与一次函数,根据题意正确列出函数关系式是解题的关键.4、B【分析】运用旋转变换的性质得到AD=AB,进而得到△ABD为等边三角形,求出BD即可解决问题.【详解】解:如图,由题意得:AD=AB,且∠B=60°,∴△ABD为等边三角形,∴BD=AB=2,∴CD=3.6﹣2.2=1.1.故选:B.【点睛】该题主要考查了旋转变换的性质、等边三角形的判定等几何知识点及其应用问题;牢固掌握旋转变换的性质是解题的关键.5、B【分析】连接OP,OP1,过P作PN⊥y轴于N,过P1作P1M⊥y轴于M,根据旋转的性质,证明,再根据所在的象限,即可确定点的坐标.【详解】如图连接OP,OP1,过P作PN⊥y轴于N,过P1作P1M⊥y轴于M∵点绕坐标原点顺时针旋转后得到点∴∴∴,∴∵∴∵∴∵在第四象限∴点的坐标为故答案为:B.【点睛】本题考查了坐标轴的旋转问题,掌握旋转的性质是解题的关键.6、B【分析】根据相似多边形的性质列出比例式,计算即可.【详解】解:∵矩形ABDC与矩形ACFE相似,∴,∵,是的中点,∴AE=5∴,解得,AC=5,故选B.【点睛】本题考查的是相似多边形的性质,掌握相似多边形的对应边的比相等是解题的关键.7、B【分析】根据已知条件确定各点与各圆的位置关系,对各个选项进行判断即可.【详解】∵点C在线段AB上(点C与点A、B不重合),过点A、B的圆记作为∴点C可以在圆的内部,故A错误,B正确;∵过点B、C的圆记作为圆∴点A可以在圆的外部,故C错误;∴点B可以在圆的外部,故D错误.故答案为B.【点睛】本题考查了点与圆的位置关系,根据题意画出各点与各圆的位置关系进行判断即可.8、B【分析】原式各项分解后,即可做出判断.【详解】A、原式=(x+1)(x-1),含因式x-1,不合题意;
B、原式=(x+1)2,不含因式x-1,符合题意;
C、原式=(x-1)2,含因式x-1,不合题意;
D、原式=(x-2)(x-1),含因式x-1,不合题意,
故选:B.【点睛】此题考查因式分解-运用公式法,提公因式法,熟练掌握因式分解的方法是解题的关键.9、D【分析】连接AO、BO、CO,根据中心角度数=360°÷边数n,分别计算出∠AOC、∠BOC的度数,根据角的和差则有∠AOB=30°,根据边数n=360°÷中心角度数即可求解.【详解】连接AO、BO、CO,∵AC是⊙O内接正四边形的一边,∴∠AOC=360°÷4=90°,∵BC是⊙O内接正六边形的一边,∴∠BOC=360°÷6=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∴n=360°÷30°=12;故选:D.【点睛】本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.10、D【分析】根据已知条件可知、都是含角的直角三角形,先利用含角的直角三角形的性质求得,再结合勾股定理即可求得答案.【详解】解:连接、,如图:∵∴∴∴在中,∵是的直径∴∴在中,,即∴∴∴∴的半径为.故选:D【点睛】本题考查了圆的一些基本性质、含角的直角三角形的性质以及勾股定理,添加适当的辅助线可以更顺利地解决问题.二、填空题(每小题3分,共24分)11、3【分析】根据线段垂直平分线的性质和折叠的性质得点B′与点A重合,BE=AE,进而可以求解.【详解】在△ABC中,∠ACB=90°,AC=6,AB=1.根据勾股定理,得:BC=2.连接AE,由作图可知:MN是线段AB的垂直平分线,∴BE=AE,BD=AD,由翻折可知:点B′与点A重合,∴△B′CE的周长=AC+CE+AE=AC+CE+BE=AC+BC=6+2=3故答案为3.【点睛】本题主要考查垂直平分线的性质定理和折叠的性质,通过等量代换把△B′CE的周长化为AC+BC的值,是解题的关键.12、-【分析】设BC的中点为M,CD交半圆M于点N,连接OM,MN.易证∆BCD是等边三角形,进而得∠OMN=60°,即可求出;再证四边形OMND是菱形,连接ON,MD,求出,利用,即可求解.【详解】设BC的中点为M,CD交半圆M于点N,连接OM,MN.∵四边形ABCD是菱形,∴BD⊥AC,∴两个半圆都经过点O,∵BD=BC=CD=2,∴∆BCD是等边三角形,∴∠BCD=60°,∴∠OCD=30°,∴∠OMN=60°,∴,∵OD=OM=MN=CN=DN=1,∴四边形OMND是菱形,连接ON,MD,则MD⊥BC,∆OMN是等边三角形,∴MD=CM=,ON=1,∴MD×ON=,∴.故答是:-【点睛】本题主要考查菱形的性质和扇形的面积公式,添加辅助线,构造等边三角形和扇形,利用割补法求面积,是解题的关键.13、【分析】根据垂径定理求得CE=ED=;然后由圆周角定理知∠COE=60°.然后通过解直角三角形求得线段OC,求出扇形COB面积,即可得出答案.【详解】解:∵AB是⊙O的直径,弦CD⊥AB,CD=2,∴CE=CD=,∠CEO=90°,∵∠CDB=30°,∴∠COB=2∠CDB=60°,∴OC==2,∴阴影部分的面积S=S扇形COB=,
故答案为:.【点睛】本题考查了垂径定理、解直角三角形,圆周角定理,扇形面积的计算等知识点,能知道阴影部分的面积=扇形COB的面积是解此题的关键.14、【分析】设=k,用k表示出a、b、c,代入求值即可.【详解】解:设=k,∴a=2k,b=3k,c=4k,∴==.故答案是:.【点睛】本题考查了比例的性质,涉及到连比时一般假设比值为k,这是常用的方法.15、不能【分析】根据三个点的坐标特征得到它们共线,于是根据确定圆的条件可判断它们不能确定一个圆.【详解】解:∵B(0,-3)、C(2,-3),∴BC∥x轴,而点A(1,-3)与C、B共线,∴点A、B、C共线,∴三个点A(1,-3)、B(0,-3)、C(2,-3)不能确定一个圆.故答案为:不能.【点睛】本题考查了确定圆的条件:不在同一直线上的三点确定一个圆.16、2【分析】根据一元二次方程的根即方程的解的定义,将代入方程中,即可得到关于的方程,解方程即可得到答案.【详解】解:∵1是一元二次方程的一个根∴∴故答案是:【点睛】本题考查的是一元二次方程的根即方程的解的定义,一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值,即用这个数代替未知数所得式子仍然成立.17、115°【分析】根据过C点的切线与AB的延长线交于P点,∠P=40°,可以求得∠OCP和∠OBC的度数,又根据圆内接四边形对角互补,可以求得∠D的度数,本题得以解决.【详解】解:连接OC,如右图所示,
由题意可得,∠OCP=90°,∠P=40°,
∴∠COB=50°,
∵OC=OB,
∴∠OCB=∠OBC=65°,
∵四边形ABCD是圆内接四边形,
∴∠D+∠ABC=180°,
∴∠D=115°,
故答案为:115°.【点睛】本题考查切线的性质、圆内接四边形,解题的关键是明确题意,找出所求问题需要的条件.18、【分析】利用因式分解法求出的值,再根据可得最终结果.【详解】解:原方程可化为:,解得:或,∵,∴.故答案为:.【点睛】本题考查的知识点是解一元二次方程以及锐角三角函数的定义,熟记正弦的取值范围是解此题的关键.三、解答题(共66分)19、(1)k的值为3,m的值为1;(2)0<n≤1或n≥3.【解析】分析:(1)将A点代入y=x-2中即可求出m的值,然后将A的坐标代入反比例函数中即可求出k的值.(2)①当n=1时,分别求出M、N两点的坐标即可求出PM与PN的关系;②由题意可知:P的坐标为(n,n),由于PN≥PM,从而可知PN≥2,根据图象可求出n的范围.详解:(1)将A(3,m)代入y=x-2,∴m=3-2=1,∴A(3,1),将A(3,1)代入y=,∴k=3×1=3,m的值为1.(2)①当n=1时,P(1,1),令y=1,代入y=x-2,x-2=1,∴x=3,∴M(3,1),∴PM=2,令x=1代入y=,∴y=3,∴N(1,3),∴PN=2∴PM=PN,②P(n,n),点P在直线y=x上,过点P作平行于x轴的直线,交直线y=x-2于点M,M(n+2,n),∴PM=2,∵PN≥PM,即PN≥2,∴0<n≤1或n≥3点睛:本题考查反比例函数与一次函数的综合问题,解题的关键是求出反比例函数与一次函数的解析式,本题属于基础题型.20、(1)OE∥BC.理由见解析;(2)【分析】(1)连接OC,根据已知条件可推出,进一步得出结论得以证明;(2)根据(1)的结论可得出∠E=∠BCD,对应的正切值相等,可得出CE的值,进一步计算出OE的值,在Rt△AFO中,设OF=3x,则AF=4x,解出x的值,继而得出OF的值,从而可得出答案.【详解】解:(1)OE∥BC.理由如下:连接OC,∵CD是⊙O的切线,∴OC⊥CD,∴∠OCE=90,∴∠OCA+∠ECF=90,∵OC=OA,∴∠OCA=∠CAB.又∵∠CAB=∠E,∴∠OCA=∠E,∴∠E+∠ECF=90,∴∠EFC=180O-(∠E+∠ECF)=90.∴∠EFC=∠ACB=90,∴OE∥BC.(2)由(1)知,OE∥BC,∴∠E=∠BCD.在Rt△OCE中,∵AB=12,∴OC=6,∵tanE=tan∠BCD=,∴.∴OE2=OC2+CE2=62+82,∴OE=10又由(1)知∠EFC=90,∴∠AFO=90.在Rt△AFO中,∵tanA=tanE=,∴设OF=3x,则AF=4x.∵OA2=OF2+AF2,即62=(3x)2+(4x)2,解得:∴,∴.【点睛】本题是一道关于圆的综合题目,涉及到的知识点有切线的性质,平行线的判定定理,三角形内角和定理,正切的定义,勾股定理等,熟练掌握以上知识点是解此题的关键.21、(1),理由见解析;(2)见解析【分析】(1)由四边形AEFD是平行四边形可得AD=EF,根据条件可证四边形ABED是平行四边形,四边形AFCD是平行四边形,所以AD=BE,AD=FC,所以AD=BC;(2)根据矩形的判定和定义,对角线相等的平行四边形是矩形.只要证明AF=DE即可得出结论.【详解】证明:(1)AD=BC理由如下:
∵AD∥BC,AB∥DE,AF∥DC,
∴四边形ABED和四边形AFCD都是平行四边形.
∴AD=BE,AD=FC,
又∵四边形AEFD是平行四边形,
∴AD=EF.
∴AD=BE=EF=FC.∴;(2)证明:∵四边形ABED和四边形AFCD都是平行四边形,
∴DE=AB,AF=DC.
∵AB=DC,
∴DE=AF.
又∵四边形AEFD是平行四边形,
∴平行四边形AEFD是矩形.考点:1.平行四边形的判定与性质;2.矩形的判定.22、(1)见解析;(2)见解析;(3)【分析】(1)要证AD是半圆O的切线只要证明∠DAO=90°即可;(2)根据两组角对应相等的两个三角形相似即可得证;(3)先求出AC、AB、AO的长,由第(2)问的结论△ABC∽△DOA,根据相似三角形的性质:对应边成比例可得到AD的长.【详解】(1)证明:∵AB为直径,∴∠ACB=90°,又∵OD∥BC,∴∠AEO=∠ACB=90°,∴∠AOD+∠BAC=90°,又∵∠D=∠BAC,∴∠AOD+∠D=90°,∴∠OAD=90°,∴AD⊥OA,∴AD是半圆O的切线;(2)证明:由(1)得∠ACB=∠OAD=90°,又∵∠D=∠BAC,∴△ABC∽△DOA;(3)解:∵O为AB中点,OD∥BC,∴OE是△ABC的中位线,则E为AC中点,∴AC=2CE,∵BC=2,CE=,∴AC=∴AB=,∴OA=AB=,由(2)得:△ABC∽△DOA,∴,∴,∴.【点睛】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.同时考查了相似三角形的判定与性质,难度适中.23、(1)y=﹣x2+x+2;(2);(3)存在一点P或,使它到x轴的距离为1【分析】(1)先根据一次函数的解析式求出A和C的坐标,再将点A和点C的坐标代入二次函数解析式即可得出答案;(2)先求出顶点D的坐标,再过D点作DM平行于y轴交AC于M,再分别以DM为底求△ADM和△DCM的面积,相加即可得出答案;(3)令y=1或y=-1,求出x的值即可得出答案.【详解】解:(1)直线y=﹣x+2中,当x=0时,y=2;当y=0时,0=﹣x+2,解得x=1∴点A、C的坐标分别为(0,2)、(1,0),把A(0,2)、C(1,0)代入解得,故抛物线的表达式为:y=﹣x2+x+2;(2)y=﹣x2+x+2∴抛物线的顶点D的坐标为,如图1,设直线AC与抛物线的对称轴交于点M直线y=﹣x+2中,当x=时,y=点M的坐标为,则DM=∴△DAC的面积为=;(3)当P到x轴的距离为1时,则①当y=1时,﹣x2+x+2=1,而,所以方程没有实数根②当y=-1时,﹣x2+x+2=-1,解得则点P的坐标为或;综上,存在一点P或,使它到x轴的距离为1.【点睛】本题考查的是二次函数,难度适中,需要熟练掌握“铅垂高、水平宽”的方法来求面积.24、(1)见解析;(2)见解析【分析】(1)作BD的垂直平分线交AB于O,再以O点为圆心,OB为半径作圆即可;(2)证明OD∥BC得到∠ODC=90°,然后根据切线的判定定理可判断AC为⊙O的切线.【详解】解:(1)如图,⊙O为所作;
(2)证明:连接OD,如图,
∵BD平分∠ABC,
∴∠CBD=∠ABD,
∵OB=OD,
∴∠OBD=∠ODB,
∴∠CBD=∠ODB,
∴OD∥BC,
∴∠ODA=∠ACB,
又∠ACB=90°,
∴∠ODA=90°,
即OD⊥AC,
∵点D是半径OD的外端点,
∴AC与⊙O相切.【点睛】本题考查了作图—复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了切线的判定.25、(1)证明见解析;(2).【分析】(1)连接OF,只要证明OF∥BC,即可推出OF⊥CD,由此即可解决问题;(2)连接AF,利用∠D=30°,求出∠CBF=∠DBF=30°,得出BF=2,在利用勾股定理得出AB的长度,从而求出⊙O的半径.【详解】(1)连接OF,∵,∴∠CBF=∠FBA,∵OF=OB,∴∠FBO=∠OFB,∵点A、O、B三点共线,∴∠CBF=∠OFB,∴BC∥OF,∴∠OFC+∠C=180°,∵∠C=90°,∴∠OFC=90°,即OF⊥DC,∴CD为⊙O的切线;(2)连接AF,∵AB为直径,∴∠AFB=90°,∵∠D=30°,∴∠CBD=60°,∵,∴∠CBF=∠DBF=∠CBD=30°,在,CF=1,∠CBF=30°,∴BF=2CF=2,在,∠ABF=30°,BF=2,∴AF=AB,∴AB2=(AB)2+BF2,即AB2=4,∴,⊙O的半径为;【点睛】本题考查切线的判定、直角三角形30度角的性质、勾股定理,直径对的圆周角为90°等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.26、(1)b=2,c=1,D(2,3);(2)E(4,-5);(3)N(2,0),N(-4,0),N(-2.5,0),N(3.5,0)【分析】(1)将点A分别代入y=-x2+bx+3,y=x+c中求出b、c的值,确定解析式,再解两个函数关系式组成的方程组即可得到点D的坐标;(2))过点E作EF⊥y轴,设E(x,-x2+2x+3),先求出点B、C的坐标,再利用面积加减关系表示出△CBE的面积,即可求出点E的坐标.(3)分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 关于税务师考试的应用题试题及答案
- 2024年统计师考试备考任务分解试题及答案
- 2025安全注射培训
- 2024物理学习策略分享试题及答案
- 收纳师考试的常见难点解析试题及答案
- 2024年统计师考试常见统计方法试题及答案
- 多媒体应用设计的职业伦理试题及答案
- 咖啡师顾客沟通技巧试题及答案
- 咖啡饮品视觉美学试题及答案
- 2024年秘书证考试备考试题及答案
- 2025年4月自考15040习概押题及答案
- 园林花卉 课件 第三篇1单元 一二年生花卉
- 【初中生物】植物在自然界中的作用 2024-2025学年七年级生物下学期课件(人教版2024)
- 2024年安庆市迎江区招聘社区人员考试真题
- 燃气工程AI智能应用企业制定与实施新质生产力战略研究报告
- 2025届福建省质检高三适应性练习英语试卷(含答案和音频)
- 《休闲农业》课件 项目五 休闲农业项目规划设计
- 工艺美术品设计师(漆器设计与制作)赛项实施方案
- 广东省2025届高三下学期3月综合能力测试(CAT) 英语试题(含答案)
- 期中评估检测题无答案2024-2025学年七年级下册道德与法治
- 2025年江苏省职业院校技能大赛中职组(网络建设与运维)考试题(附答案)
评论
0/150
提交评论