下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省广安市邻水县九龙中学2022年高一数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.下列各组函数中,表同一函数的是(
)A
和
B
和C
和
D=
和参考答案:D2.下列函数是奇函数的是
A.
B.y=xsinx
C.y=tanx
D.参考答案:C3.(5分)若2a=3b=6,则+=() A. B. 6 C. D. 1参考答案:D考点: 指数式与对数式的互化.专题: 函数的性质及应用.分析: 2a=3b=6,可得a=,b=,代入即可得出.解答: ∵2a=3b=6,∴a=,b=,则+===1.故选:D.点评: 本题考查了指数式化为对数式、对数的运算法则,属于基础题.4.设全集U={1,2,3,4,5,6},集合A={1,2},B={2,3},则A∩(?UB)=(
)A.{4,5} B.{2,3} C.{1} D.{2}参考答案:C【考点】交、并、补集的混合运算.【专题】集合.【分析】由全集U及B,求出B的补集,找出A与B补集的交集即可.【解答】解:∵全集U={1,2,3,4,5,6},A={1,2},B={2,3},∴?UB={1,4,5,6},则A∩(?UB)={1},故选:C.【点评】此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.5.函数f(x)=lnx+2x-8的零点所在区间是()A.(0,1)
B.
(1,2)
C.(2,3)
D.(3,4)参考答案:D6.下列条件中,能判断两个平面平行的是
(
)
A.一个平面内的一条直线平行于另一个平面;
B.一个平面内的两条直线平行于另一个平面
C.一个平面内有无数条直线平行于另一个平面
D.一个平面内任何一条直线都平行于另一个平面参考答案:D7.从随机编号为0001,0002,…,1500的1500名参加这次南昌市四校联考期末测试的学生中用系统抽样的方法抽取一个样本进行成绩分析,已知样本中编号最小的两个编号分别为0018,0068,则样本中最大的编号应该是()A.1466 B.1467 C.1468 D.1469参考答案:C【考点】B4:系统抽样方法.【分析】根据系统抽样的定义确定样本间隔即可.【解答】解:样本中编号最小的两个编号分别为0018,0068,则样本间隔为68﹣18=50,则共抽取1500÷50=30,则最大的编号为18+50×29=1468,故选:C8.已知水平放置的△ABC的直观图△A′B′C′(斜二测画法)是边长为a的正三角形,则原△ABC的面积为
(
)A.a2
B.a2
C.a2
D.a2参考答案:D9.圆C1:(x+2)2+(y﹣2)2=1与圆C2:(x﹣2)2+(y﹣5)2=16的位置关系是()A.外离 B.相交 C.内切 D.外切参考答案:D【考点】直线与圆的位置关系.【分析】先根据圆的标准方程得到分别得到两圆的圆心坐标及两圆的半径,然后利用圆心之间的距离d与两个半径相加、相减比较大小即可得出圆与圆的位置关系.【解答】解:由圆C1:(x+2)2+(y﹣2)2=1与圆C2:(x﹣2)2+(y﹣5)2=16得:圆C1:圆心坐标为(﹣2,2),半径r=1;圆C2:圆心坐标为(2,5),半径R=4.两个圆心之间的距离d==5,而d=R+r,所以两圆的位置关系是外切.故选D10.一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下,甲说:“罪犯在乙、丙、丁三人之中”;乙说:“我没有作案,是丙偷的”;丙说:“甲、乙两人中有一人是小偷”;丁说:“乙说的是事实”.经过调查核实,四人中有两人说的是真话,另外两人说的是假话,且这四人中只有一人是罪犯,由此可判断罪犯是(
)A.甲
B.乙
C.丙
D.丁参考答案:B∵乙、丁两人的观点一致,∴乙、丁两人的供词应该是同真或同假;若乙、丁两人说的是真话,则甲、丙两人说的是假话,由乙说真话推出丙是罪犯的结论;由甲说假话,推出乙、丙、丁三人不是罪犯的结论,矛盾;∴乙、丁两人说的是假话,而甲、丙两人说的是真话;由甲、丙的供述内容可以断定乙是罪犯.
二、填空题:本大题共7小题,每小题4分,共28分11.已知偶函数y=f(x)对任意实数x都有f(x+1)=-f(x),且在[0,1]上单调递减,则f、f、f从小到大的顺序参考答案:12.扇形的弧长为1cm,半径为4cm,则,扇形的面积是
cm2参考答案:213.函数的值域为_____________.参考答案:略14.计算的结果为▲.参考答案:515.已知,则其值域为_______________.参考答案:略16.f(x)=x2,若对任意的x∈[t,t+2],不等式f(x+t)≥2f(x)恒成立,则实数t的取值范围是.参考答案:(﹣∞,﹣]∪[,+∞)【考点】函数恒成立问题.【分析】问题转化为|x+t|≥|x|在[t,t+2]恒成立,去掉绝对值,得到关于t的不等式,求出t的范围即可.【解答】解:f(x)=x2,x∈[t,t+2],不等式f(x+t)≥2f(x)=f(x)在[t,t+2]恒成立,即|x+t|≥|x|在[t,t+2]恒成立,即:x≤(1+)t在[t,t+2]恒成立,或x≤(1﹣)t在[t,t+2]恒成立,解得:t≥或t≤﹣,故答案为:(﹣∞,﹣]∪[,+∞).17.在中,内角A、B、C依次成等差数列,,则外接圆的面积为__
___.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.设,已知函数,.(1)若是的零点,求不等式的解集:(2)当时,,求a的取值范围.参考答案:(1);(2)【分析】(1)利用可求得,将不等式化为;分别在和两种情况下解不等式可求得结果;(2)当时,,可将变为在上恒成立;分类讨论得到解析式,从而可得单调性;分别在、、三种情况下,利用构造不等式,解不等式求得结果.【详解】(1)是的零点
由得:当时,,即,解得:当时,,即,解得:的解集为:(2)当时,,即:时,
在上恒成立①当时,恒成立
符合题意②当时,在上单调递增;在上单调递减;在上单调递增当时,,解得:当时,,解集为当时,,解得:综上所述,的取值范围为:【点睛】本题考查含绝对值不等式的求解、恒成立问题的求解;求解恒成立问题的关键是能够通过分类讨论的方式去掉绝对值符号,结合函数单调性,将问题转化为所求参数与函数最值之间的大小关系的比较问题,从而构造不等式求得结果.19.已知函数f(x)=x+的图象过点P(1,5).(Ⅰ)求实数m的值,并证明函数f(x)是奇函数;(Ⅱ)利用单调性定义证明f(x)在区间[2,+∞)上是增函数.参考答案:【考点】函数奇偶性的判断;函数单调性的判断与证明.【分析】(Ⅰ)代入点P,求得m,再由奇函数的定义,即可得证;(Ⅱ)根据单调性的定义,设值、作差、变形、定符号和下结论即可得证.【解答】解:(Ⅰ)的图象过点P(1,5),∴5=1+m,∴m=4…∴,f(x)的定义域为{x|x≠0},关于原点对称,…∴f(x)=﹣f(x),…f(x)是奇函数.…(Ⅱ)证明:设x2>x1≥2,则又x2﹣x1>0,x1≥2,x2>2,∴x1x2>4…∴f(x2)﹣f(x1)>0,∴f(x2)>f(x1),即f(x)在区间[2,+∞)上是增函数…20.已知不等式(1)若,求上述不等式的解集;(2)不等式的解集为,求的值.参考答案:略21.已知a,b,c∈R,a≠0.判断“a-b+c=0”是“一元二次方程ax2+bx+c=0有一根为-1”的什么条件?并说明理由.参考答案:解:“a-b+c=0”是“一元二次方程ax2+bx+c=0有一根为-1”的充要条件.理由如下:当a,b,c∈R,a≠0时,若a-b+c=0,则-1满足一元二次方程ax2+bx+c=0,即“一元二次方程ax2+bx+c=0有一根为-1”,故“a+b+c=0”是“一元二次方程ax2+bx+c=0有一根为-1”的充分条件,若一元二次方程ax2+bx+c=0有一根为-1,则a-b+c=0,故“a-b+c=0”是“一元二次方程ax2+bx+c=0有一根为-1”的必要条件,综上所述,“a-b+c=0”是“一元二次方程ax2+bx+c=0有一根为-1”的充要条件.22.某公司试销一种新产品,规定试销时销售单价不低于成本单价500元/件,又不高于800元/件,经试销调查,发现销售量y(件)与销售单价(元/件),可近似看做一次函数的关系(图象如下图所示).(1)根据图象,求一次函数的表达式;(2)设公司获得的毛利润(毛利润=销售总价-成本总价)为S元,①求S关于的函数表达式;②求该公司可获得的最大毛利润,并求出此时相应的销售单价.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 福利院去月季园春游活动方案
- LED封装基础知识
- 红领巾湿地保护计划活动方案
- 社区卫生服务中心老年人健康管理工作总结
- 学前教育求职的选择与确定方案
- 通信行业评标室管理办法
- 地铁施工质量控制方案
- 2024工伤死亡理赔合同协议书
- 脸谱美术课程设计
- 华中师范大学《中国特色社会主义理论与实践研究》2021-2022学年第一学期期末试卷
- 世界投资报告2024 (概述)- 投资便利化和数字政务
- 道德与法治三年级上册+阶段性(期中)综合素养评价(部编版)
- 1-2《光的传播》(教学设计)苏教版五年级科学上册
- 2024-2030年中国新型电力系统行业发展展望及投资前景预测研究报告
- 2024自动导引车AGV技术规范
- 广东某办公楼改造装饰工程施工组织设计方案
- 《20世纪的科学伟人爱因斯坦》参考课件2
- 八年级道德与法治上册 第一单元 走进社会生活 单元复习课件
- 设计师会议管理制度
- 三年级上册数学说课稿《5.笔算多位数乘一位数(连续进位)》人教新课标
- 行贿受贿检讨书
评论
0/150
提交评论