2022-2023学年北京市和平街一中学数学九上期末检测试题含解析_第1页
2022-2023学年北京市和平街一中学数学九上期末检测试题含解析_第2页
2022-2023学年北京市和平街一中学数学九上期末检测试题含解析_第3页
2022-2023学年北京市和平街一中学数学九上期末检测试题含解析_第4页
2022-2023学年北京市和平街一中学数学九上期末检测试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.一元二次方程x2﹣16=0的根是(

)A.x=2

B.x=4

C.x1=2,x2=﹣2

D.x1=4,x2=﹣42.方程的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.有一个实数根 D.没有实数根3.用配方法解一元二次方程x2﹣6x﹣10=0时,下列变形正确的为()A.(x+3)2=1 B.(x﹣3)2=1C.(x+3)2=19 D.(x﹣3)2=194.已知关于x的一元二次方程的一个根为1,则m的值为()A.1 B.-8 C.-7 D.75.方程的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根 D.无法确定6.如图,是的直径,弦于,连接、,下列结论中不一定正确的是()A. B. C. D.7.如图,点B、D、C是⊙O上的点,∠BDC=130°,则∠BOC是()A.100° B.110° C.120° D.130°8.如图,一根电线杆垂直于地面,并用两根拉线,固定,量得,,则拉线,的长度之比()A. B. C. D.9.如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且CO=CD,则∠PCA=()A.30° B.45° C.60° D.67.5°10.如图,AB切⊙O于点B,C为⊙O上一点,且OC⊥OA,CB与OA交于点D,若∠OCB=15°,AB=2,则⊙O的半径为()A. B.2 C.3 D.4二、填空题(每小题3分,共24分)11.已知关于的方程有两个不相等的实数根,则的取值范围是__________.12.函数y=–1的自变量x的取值范围是.13.如图,若直线与轴、轴分别交于点、,并且,,一个半径为的,圆心从点开始沿轴向下运动,当与直线相切时,运动的距离是__________.14.若关于x的函数与x轴仅有一个公共点,则实数k的值为.15.如图,△ABC三个顶点的坐标分别为A(2,2),B(4,2),C(6,4),以原点为位似中心,将△ABC缩小,使变换得到的△DEF与△ABC对应边的比为1∶2,则线段AC的中点P变换后对应点的坐标为____.16.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”,在△ABC中,AB=AC,若△ABC是“好玩三角形”,则tanB____________。17.如图,在边长为9的正三角形ABC中,BD=3,∠ADE=60°,则AE的长为.18.已知关于x的方程有两个实数根,则实数k的取值范围为____________.三、解答题(共66分)19.(10分)如图,四边形ABCD是矩形,E为CD边上一点,且AE、BE分别平分∠DAB、∠ABC.(1)求证:△ADE≌△BCE;(2)已知AD=3,求矩形的另一边AB的值.20.(6分)如图,抛物线与轴交于、两点,与轴交于点.(1)求点,点和点的坐标;(2)在抛物线的对称轴上有一动点,求的值最小时的点的坐标;(3)若点是直线下方抛物线上一动点,运动到何处时四边形面积最大,最大值面积是多少?21.(6分)如图,已知抛物线经过的三个顶点,其中点,点,轴,点是直线下方抛物线上的动点.(1)求抛物线的解析式;(2)过点且与轴平行的直线与直线、分别交与点、,当四边形的面积最大时,求点的坐标;(3)当点为抛物线的顶点时,在直线上是否存在点,使得以、、为顶点的三角形与相似,若存在,直接写出点的坐标;若不存在,请说明理由.22.(8分)计算:(1)(2)解方程:23.(8分)如图,一次函数y=﹣x+4的图象与反比例函数y=(k为常数,且k≠0)的图象交于A(1,a),B(3,b)两点.(1)求反比例函数的表达式(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标(3)求△PAB的面积.24.(8分)如图,将等边△ABC绕点C顺时针旋转90°得到△EFC,∠ACE的平分线CD交EF于点D,连接AD、AF.(1)求∠CFA度数;(2)求证:AD∥BC.25.(10分)如图,已知△ABC,∠B=90゜,AB=3,BC=6,动点P、Q同时从点B出发,动点P沿BA以1个单位长度/秒的速度向点A移动,动点Q沿BC以2个单位长度/秒的速度向点C移动,运动时间为t秒.连接PQ,将△QBP绕点Q顺时针旋转90°得到△,设△与△ABC重合部分面积是S.(1)求证:PQ∥AC;(2)求S与t的函数关系式,并直接写出自变量t的取值范围.26.(10分)如图,点A、B、C、D是⊙O上的四个点,AD是⊙O的直径,过点C的切线与AB的延长线垂直于点E,连接AC、BD相交于点F.(1)求证:AC平分∠BAD;(2)若⊙O的半径为,AC=6,求DF的长.

参考答案一、选择题(每小题3分,共30分)1、D【解析】本题考查了一元二次方程的解法,移项后即可得出答案.【详解】解:16=x2,x=±1.故选:D【点睛】本题考查了一元二次方程的解法,熟悉掌握一元二次方程的解法是解决本题的关键.2、A【分析】计算判别式即可得到答案.【详解】∵=∴方程有两个不相等的实数根,故选:A.【点睛】此题考查一元二次方程根的情况,正确掌握判别式的三种情况即可正确解题.3、D【分析】方程移项变形后,利用完全平方公式化简得到结果,即可做出判断.【详解】方程移项得:,配方得:,即,故选D.4、D【解析】直接利用一元二次方程的解的意义将x=1代入求出答案即可.【详解】∵关于x的一元二次方程x2+mx−8=0的一个根是1,∴1+m−8=0,解得:m=7.故答案选:D.【点睛】本题考查的知识点是一元二次方程的解,解题的关键是熟练的掌握一元二次方程的解.5、A【分析】此题考查一元二次方程解的情况的判断.利用判别式来判断,当时,有两个不等的实根;当时,有两个相等的实根;当时,无实根;【详解】题中,所以次方程有两个不相等的实数根,故选A;6、C【分析】根据垂径定理及圆周角定理对各选项进行逐一分析即可.【详解】解:∵CD是⊙O的直径,弦AB⊥CD于E,

∴AE=BE,,故A、B正确;

∵CD是⊙O的直径,

∴∠DBC=90°,故D正确.

故选:C.【点睛】本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.7、A【分析】首先在优弧上取点E,连接BE,CE,由点B、D、C是⊙O上的点,∠BDC=130°,即可求得∠E的度数,然后由圆周角定理,即可求得答案.【详解】解:在优弧上取点E,连接BE,CE,如图所示:

∵∠BDC=130°,

∴∠E=180°-∠BDC=50°,

∴∠BOC=2∠E=100°.

故选A.【点睛】此题考查了圆周角定理以及圆的内接四边形的性质.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.8、D【分析】根据锐角三角函数可得:和,从而求出.【详解】解:在Rt△AOP中,,在Rt△BOP中,,∴故选D.【点睛】此题考查的是锐角三角函数,掌握锐角三角函数的定义是解决此题的关键.9、D【分析】利用圆的切线的性质定理、等腰三角形的性质即可得出.【详解】解:∵PD切⊙O于点C,∴OC⊥CD,在Rt△OCD中,又CD=OC,∴∠COD=45°.∵OC=OA,∴∠OCA=×45°=22.5°.∴∠PCA=90°-22.5°=67.5°.故选:D.【点睛】本题考查切线的性质定理,熟练掌握圆的切线的性质定理、等腰三角形的性质是解题的关键.10、B【分析】连接OB,由切线的性质可得∠OBA=90°,结合已知条件可求出∠A=30°,因为AB的长已知,所以⊙O的半径可求出.【详解】连接OB,∵AB切⊙O于点B,∴OB⊥AB,∴∠ABO=90°,∵OC⊥OA,∠OCB=15°,∴∠CDO=∠ADO=75°,∵OC=OB,∴∠C=∠OBD=15°,∴∠ABD=75°,∴∠ADB=∠ABD=75°,∴∠A=30°,∴BO=AO,∵AB=2,∴BO2+AB2=4OB2,∴BO=2,∴⊙O的半径为2,故选:B.【点睛】本题考查了切线的性质、等腰三角形的判定和性质以及勾股定理的运用,求出∠A=30°,是解题的关键.二、填空题(每小题3分,共24分)11、且【分析】根据根的判别式和一元一次方程的定义得到关于的不等式,求出的取值即可.【详解】关于的一元二次方程有两个不相等的实数根,∵,∴且,

解得:且,

故答案为:且.【点睛】本题考查了根的判别式和一元二次方程的定义,能根据题意得出关于的不等式是解此题的关键.12、x≥1【解析】试题分析:根据二次根式有意义的条件是被开方数大于等于1,可知x≥1.考点:二次根式有意义13、3或1【解析】分圆运动到第一次与AB相切,继续运算到第二次与AB相切两种情况,画出图形进行求解即可得.【详解】设第一次相切的切点为E,第二次相切的切点为F,连接EC′,FC″,在Rt△BEC′中,∠ABC=30°,EC′=1,∴BC′=2EC′=2,∵BC=5,∴CC′=3,同法可得CC″=1,故答案为3或1.【点睛】本题考查了切线的性质、含30度角的直角三角形的性质,会用分类讨论的思想解决问题是关键,注意数形结合思想的应用.14、0或-1.【解析】由于没有交待是二次函数,故应分两种情况:当k=0时,函数是一次函数,与x轴仅有一个公共点.当k≠0时,函数是二次函数,若函数与x轴仅有一个公共点,则有两个相等的实数根,即.综上所述,若关于x的函数与x轴仅有一个公共点,则实数k的值为0或-1.15、(1,)或(-1,-)【分析】位似变换中对应点的坐标的变化规律:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或−k.本题中k=1或−1.【详解】解:∵两个图形的位似比是1:(−)或1:,AC的中点是(4,3),∴对应点是(1,)或(−1,−).【点睛】本题主要考查位似变换中对应点的坐标的变化规律.16、1或【分析】分两种情形分别求解即可解决问题.【详解】①如图1中,取BC的中点H,连接AH.∵AB=AC,BH=CH,∴AH⊥BC,设BC=AH=1a,则BH=CH=a,∴tanB==1.②取AB的中点M,连接CM,作CN⊥AM于N,如图1.设CM=AB=AC=4a,则BM=AM=1a,∵CN⊥AM,CM=CA,∴AN=NM=a,在Rt△CNM中,CN=,∴tanB=,故答案为1或.【点睛】本题考查解直角三角形、等腰三角形的性质、“好玩三角形”的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题.17、7【解析】试题分析:∵△ABC是等边三角形,∴∠B=∠C=60°,AB=BC.∴CD=BC-BD=9-3=6,;∠BAD+∠ADB=120°.∵∠ADE=60°,∴∠ADB+∠EDC=120°.∴∠DAB=∠EDC.又∵∠B=∠C=60°,∴△ABD∽△DCE.∴,即.∴.18、【分析】根据一元二次方程有两个实数根,可知,列不等式即可求出k的取值范围.【详解】∵关于x的方程有两个实数根∴解得故答案为:.【点睛】本题考查根据一元二次方程根的情况求参数,解题的关键是掌握判别式与一元二次方程根的情况之间的关系.三、解答题(共66分)19、(1)证明见解析;(2)AB=1.【分析】(1)根据矩形的性质,即可得到∠D=∠C,AD=BC,∠DAE=∠CBE=45°,进而得出△ADE≌△BCE;(2)依据△ADE是等腰直角三角形,即可得到DE的长,再根据全等三角形的性质以及矩形的性质,即可得到AB的长.【详解】解:(1)∵四边形ABCD是矩形,∴∠D=∠C=∠BAD=∠ABC=90°,AD=BC,又∵AE、BE分别平分∠DAB、∠ABC,∴∴∠DAE=∠CBE=45°,∴△ADE≌△BCE(ASA);(2)∵∠DAE=45°,∠D=90°,∴∠DAE=∠AED=45°,∴AD=DE=3,又∵△ADE≌△BCE,∴DE=CE=3,∴AB=CD=1.【点睛】本题考查了全等三角形的判定和性质,矩形的性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.20、(1)A(﹣1,0),B(l,0),C(0,﹣1);(1)P(,);(3)(-1,-1);2【分析】(1)令x=0,y=0,代入函数解析式,即可求解;

(1)连接AC与对称轴的交点即为点P.求出直线AC的解析式即可解决问题.

(3)过点M作MN⊥x轴与点N,设点M(x,x1+x-1),则AN=x+1,ON=-x,OB=1,OC=1,MN=-(x1+x-1)=-x1-x+1,根据S四边形ABCM=S△AOM+S△OCM+S△BOC构建二次函数,利用二次函数的性质即可解决问题.【详解】解:(1)由y=0,得x1+x﹣1=0解得x1=﹣1,x1=l,∴A(﹣1,0),B(l,0),由x=0,得y=﹣1,∴C(0,﹣1).(1)连接AC与对称轴的交点即为点P.设直线AC为y=kx+b,则,得k=﹣l,∴y=﹣x﹣1.对称轴为x=,当x=时,y=-()﹣1=,∴P(,).(3)过点M作MN丄x轴与点N,设点M(x,x1+x﹣1),则OA=1,ON=﹣x,OB=1,OC=1,MN=﹣(x1+x﹣1)=﹣x1﹣x+1,S四边形ABCM=S△AOM+S△OCM+S△BOC=×1×(﹣x1﹣x+1)+×1(﹣x)+×1×1=﹣x1﹣1x+3=﹣(x+1)1+2.∵a=﹣1<0,∴当x=﹣1时,S四边形ABCM的最大值为2.∴点M坐标为(﹣1,﹣1)时,S四边形ABCM的最大值为2.【点睛】本题考查二次函数综合题、待定系数法、两点之间线段最短、最值问题等知识,解题的关键是灵活运用所学知识解决问题,学会利用对称解决在性质问题,学会构建二次函数解决最值问题.21、(1);(2);(3)存在,,【分析】(1)用待定系数法求出抛物线解析式即可;(2)设点P(m,),表示出PE=,再用S四边形AECP=S△AEC+S△APC=AC×PE,建立函数关系式,求出最值即可;(3)先判断出PF=CF,再得到∠PCA=∠EAC,以C、P、Q为顶点的三角形与△ABC相似,分两种情况计算即可.【详解】(1)∵点,在抛物线上,∴,∴,∴抛物线的解析式为,(2)∵AC∥x轴,A(0,3)∴=3,∴x1=−6,x2=0,∴点C的坐标(−8,3),∵点,,求得直线AB的解析式为y=−x+3,设点P(m,)∴E(m,−m+3)∴PE=−m+3−()=,∵AC⊥EP,AC=8,∴S四边形AECP=S△AEC+S△APC=AC×EF+AC×PF=AC×(EF+PF)=AC×PE=×8×()=−m2−12m=−(m+6)2+36,∵−8<m<0∴当m=−6时,四边形AECP的面积的最大,此时点P(−6,0);(3)∵=,∴P(−4,−1),∴PF=yF−yP=4,CF=xF−xC=4,∴PF=CF,∴∠PCF=45°同理可得:∠EAF=45°,∴∠PCF=∠EAF,∴在直线AC上存在满足条件的Q,设Q(t,3)且AB==12,AC=8,CP=,∵以C、P、Q为顶点的三角形与△ABC相似,①当△CPQ∽△ABC时,∴,∴,∴t=−或t=−(不符合题意,舍)∴Q(−,3)②当△CQP∽△ABC时,∴,∴,∴t=4或t=−20(不符合题意,舍)∴Q(4,3)综上,存在点.【点睛】此题是二次函数综合题,主要考查了待定系数法,相似三角形的性质,几何图形面积的求法(用割补法),解本题的关键是求函数解析式.22、(1);(2)【分析】(1)由题意利用乘方运算法则并代入特殊三角函数值进行计算即可;(2)根据题意直接利用因式分解法进行方程的求解即可.【详解】解:(1)(2),解得.【点睛】本题考查实数的混合运算以及解一元二次方程,熟练掌握乘方运算法则和特殊三角函数值以及利用因式分解法解方程是解题的关键.23、(1)反比例函数的表达式y=,(2)点P坐标(,0),(3)S△PAB=1.1.【解析】(1)把点A(1,a)代入一次函数中可得到A点坐标,再把A点坐标代入反比例解析式中即可得到反比例函数的表达式;(2)作点D关于x轴的对称点D,连接AD交x轴于点P,此时PA+PB的值最小.由B可知D点坐标,再由待定系数法求出直线AD的解析式,即可得到点P的坐标;(3)由S△PAB=S△ABD﹣S△PBD即可求出△PAB的面积.解:(1)把点A(1,a)代入一次函数y=﹣x+4,得a=﹣1+4,

解得a=3,

∴A(1,3),

点A(1,3)代入反比例函数y=,

得k=3,

∴反比例函数的表达式y=,

(2)把B(3,b)代入y=得,b=1∴点B坐标(3,1);作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,

∴D(3,﹣1),设直线AD的解析式为y=mx+n,

把A,D两点代入得,,

解得m=﹣2,n=1,

∴直线AD的解析式为y=﹣2x+1,令y=0,得x=,

∴点P坐标(,0),(3)S△PAB=S△ABD﹣S△PBD=×2×2﹣×2×=2﹣=1.1.点晴:本题是一道一次函数与反比例函数的综合题,并与几何图形结合在一起来求有关于最值方面的问题.此类问题的重点是在于通过待定系数法求出函数图象的解析式,再通过函数解析式反过来求坐标,为接下来求面积做好铺垫.24、(1)75°(2)见解析【解析】(1)由等边三角形的性质可得∠ACB=60°,BC=AC,由旋转的性质可得CF=BC,∠BCF=90°,由等腰三角形的性质可求解;(2)由“SAS”可证△ECD≌△ACD,可得∠DAC=∠E=60°=∠ACB,即可证AD∥BC.【详解】解:(1)∵△ABC是等边三角形∴∠ACB=60°,BC=AC∵等边△ABC绕点C顺时针旋转90°得到△EFC∴CF=BC,∠BCF=90°,AC=CE∴CF=AC∵∠BCF=90°,∠ACB=60°∴∠ACF=∠BCF﹣∠ACB=30°∴∠CFA=(180°﹣∠ACF)=75°(2)∵△ABC和△EFC是等边三角形∴∠ACB=60°,∠E=60°∵CD平分∠ACE∴∠ACD=∠ECD∵∠ACD=∠ECD,CD=CD,CA=CE,∴△ECD≌△ACD(SAS)∴∠DAC=∠E=60°∴∠DAC=∠ACB∴AD∥BC【点睛】本题考查了旋转的性质,等边三角形的性质,等腰三角形的性质,平行线的判定,熟练运用旋转的性质是本题关键.25、(1)见解析;(2)【分析】(1)由题意可得出,继而可证明△BPQ∽△BAC,从而证明结论;(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论