




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年山东省德州市普通高校对口单招高等数学一自考测试卷(含答案)学校:________班级:________姓名:________考号:________
一、单选题(20题)1.
2.A.A.lnx+CB.-lnx+CC.f(lnx)+CD.-f(lnx)+C
3.二元函数z=x3-y3+3x2+3y2-9x的极小值点为()
A.(1,0)B.(1,2)C.(-3,0)D.(-3,2)
4.
5.设函数y=f(x)的导函数,满足f'(-1)=0,当x<-1时,f'(x)<0;x>-1时,f'(x)>0.则下列结论肯定正确的是().A.A.x=-1是驻点,但不是极值点B.x=-1不是驻点C.x=-1为极小值点D.x=-1为极大值点6.已知y=ksin2x的一个原函数为y=cos2x,则k等于()。A.2B.1C.-1D.-2
7.曲线y=x-3在点(1,1)处的切线斜率为()
A.-1B.-2C.-3D.-48.A.A.1B.2C.3D.49.设f'(x)=1+x,则f(x)等于().A.A.1
B.X+X2+C
C.x++C
D.2x+x2+C
10.刚体上A、B、C、D四点组成一个平行四边形,如在其四个顶点作用四个力,此四个边恰好组成封闭的力多边形。则()
A.力系平衡
B.力系有合力
C.力系的合力偶矩等于平行四边形ABCD的面积
D.力系的合力偶矩等于负的平行四边形ABCD的面积的2倍
11.
12.
13.设∫0xf(t)dt=xsinx,则f(x)=()A.sinx+xcosxB.sinx-xcosxC.xcosx-sinxD.-(sinx+xcosx)
14.A.没有渐近线B.仅有水平渐近线C.仅有铅直渐近线D.既有水平渐近线,又有铅直渐近线
15.设z=x2+y2,dz=()。
A.2ex2+y2(xdx+ydy)
B.2ex2+y2(zdy+ydx)
C.ex2+y2(xdx+ydy)
D.2ex2+y2(dx2+dy2)
16.A.e2
B.e-2
C.1D.0
17.
18.图示结构中,F=10N,I为圆杆,直径d=15mm,2为正方形截面杆,边长为a=20mm,α=30。,则各杆强度计算有误的一项为()。
A.1杆受拉20kNB.2杆受压17.3kNC.1杆拉应力50MPaD.2杆压应力43.3MPa
19.函数y=f(x)在(a,b)内二阶可导,且f'(x)>0,f"(x)<0,则曲线y=f(x)在(a,b)内().
A.单调增加且为凹B.单调增加且为凸C.单调减少且为凹D.单调减少且为凸
20.
二、填空题(20题)21.设y=f(x)在点x=0处可导,且x=0为f(x)的极值点,则f'(0)=______.
22.
23.
24.
25.
26.27.28.
29.
30.31.设y=ln(x+2),贝y"=________。32.
33.过点M1(1,2,-1)且与平面x-2y+4z=0垂直的直线方程为_________.
34.
35.
36.37.38.39.方程cosxsinydx+sinxcosydy=0的通解为___________.40.三、计算题(20题)41.研究级数的收敛性(即何时绝对收敛,何时条件收敛,何时发散,其中常数a>0.42.设抛物线Y=1-x2与x轴的交点为A、B,在抛物线与x轴所围成的平面区域内,以线段AB为下底作内接等腰梯形ABCD(如图2—1所示).设梯形上底CD长为2x,面积为
S(x).
(1)写出S(x)的表达式;
(2)求S(x)的最大值.
43.将f(x)=e-2X展开为x的幂级数.
44.
45.
46.
47.已知某商品市场需求规律为Q=100e-0.25p,当p=10时,若价格上涨1%,需求量增(减)百分之几?
48.求函数f(x)=x3-3x+1的单调区间和极值.49.
50.51.当x一0时f(x)与sin2x是等价无穷小量,则52.设平面薄板所占Oxy平面上的区域D为1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求该薄板的质量m.53.54.求函数一的单调区间、极值及其曲线的凹凸区间和拐点.55.求函数y=x-lnx的单调区间,并求该曲线在点(1,1)处的切线l的方程.
56.
57.求微分方程的通解.58.求曲线在点(1,3)处的切线方程.59.证明:
60.求微分方程y"-4y'+4y=e-2x的通解.
四、解答题(10题)61.62.求,其中D为y=x-4,y2=2x所围成的区域。63.设y=x2+sinx,求y'.
64.
65.
66.求微分方程xy'-y=x2的通解.
67.求由曲线y=cos、x=0及y=0所围第一象限部分图形的面积A及该图形绕x轴旋转所得旋转体的体积Vx。
68.
69.
70.
五、高等数学(0题)71.当x→0时,tan2x是()。
A.比sin3x高阶的无穷小B.比sin3x低阶的无穷小C.与sin3x同阶的无穷小D.与sin3x等价的无穷小六、解答题(0题)72.
参考答案
1.A
2.C
3.A对于点(-3,0),A=-18+6=-12,B=0,C=6,B2-AC=72>0,故此点为非极值点.对于点(-3,2),A=-12,B=0,C=-12+6=-6,B2-AC=-72<0,故此点为极大值点.对于点(1,0),A=12,B=0,C=6,B2-AC=-72<0,故此点为极小值点.对于点(1,2),A=12=0,C=-6,B2-AC=72>0,故此点为非极值点.
4.B
5.C本题考查的知识点为极值的第一充分条件.
由f'(-1)=0,可知x=-1为f(x)的驻点,当x<-1时,f'(x)<0;当x>-1时,f'(x)>1,由极值的第一充分条件可知x=-1为f(x)的极小值点,故应选C.
6.D本题考查的知识点为可变限积分求导。由原函数的定义可知(cos2x)'=ksin2x,而(cos2x)'=(-sin2x)·2,可知k=-2。
7.C由导数的几何意义知,若y=f(x)可导,则曲线在点(x0,f(x0))处必定存在切线,且该切线的斜率为f"(x0)。由于y=x-3,y"=-3x-4,y"|x=1=-3,可知曲线y=x-3在点(1,1)处的切线斜率为-3,故选C。
8.D
9.C本题考查的知识点为不定积分的性质.
可知应选C.
10.D
11.C解析:
12.A
13.A
14.D
15.A∵z=ex+y∴z"=ex2+y22x;zy"=ex2+y22y∴dz=ex2+y22xdx+ex2+y22ydy
16.A
17.A解析:
18.C
19.B解析:本题考查的知识点为利用一阶导数符号判定函数的单调性和利用二阶导数符号判定曲线的凹凸性.
由于在(a,b)内f'(x)>0,可知f(x)在(a,b)内单调增加,又由于f"(x)<0,可知曲线y=f(x)在(a,b)内为凹,可知应选B.
20.D21.0本题考查的知识点为极值的必要条件.
由于y=f(x)在点x=0可导,且x=0为f(x)的极值点,由极值的必要条件可知有f'(0)=0.
22.(1/3)ln3x+C
23.
24.
解析:
25.e26.0.
本题考查的知识点为连续函数在闭区间上的最小值问题.
通常求解的思路为:
27.0
28.
29.e
30.1
31.
32.
33.
34.3本题考查了幂级数的收敛半径的知识点.
所以收敛半径R=3.
35.(sinx+cosx)exdx(sinx+cosx)exdx解析:
36.37.f(0).
本题考查的知识点为导数的定义.
由于f(0)=0,f(0)存在,因此
本题如果改为计算题,其得分率也会下降,因为有些考生常常出现利用洛必达法则求极限而导致运算错误:
因为题设中只给出f(0)存在,并没有给出f(x)(x≠0)存在,也没有给出f(x)连续的条件,因此上述运算的两步都错误.
38.1/z本题考查了二元函数的二阶偏导数的知识点。
39.sinx·siny=Csinx·siny=C本题考查了可分离变量微分方程的通解的知识点.
由cosxsinydx+sinxcosydy=0,知sinydsinx+sinxdsiny=-0,即d(sinx·siny)=0,两边积分得sinx·siny=C,这就是方程的通解.
40.
41.
42.
43.
44.
45.
则
46.
47.需求规律为Q=100ep-2.25p
∴当P=10时价格上涨1%需求量减少2.5%需求规律为Q=100ep-2.25p,
∴当P=10时,价格上涨1%需求量减少2.5%48.函数的定义域为
注意
49.由一阶线性微分方程通解公式有
50.
51.由等价无穷小量的定义可知52.由二重积分物理意义知
53.
54.
列表:
说明
55.
56.
57.58.曲线方程为,点(1,3)在曲线上.
因此所求曲线方程为或写为2x+y-5=0.
如果函数y=f(x)在点x0处的导数f′(x0)存在,则表明曲线y=f(x)在点
(x0,fx0))处存在切线,且切线的斜率为f′(x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 借款保证合同与借款保证担保合同
- 沥青摊铺劳务合同
- 厦门软件职业技术学院《会计手工实训》2023-2024学年第二学期期末试卷
- 长春理工大学《医学微生物学实验》2023-2024学年第二学期期末试卷
- 大连财经学院《CoreDraw图像设计》2023-2024学年第二学期期末试卷
- 江苏科技大学苏州理工学院《影视文学研究》2023-2024学年第二学期期末试卷
- 江苏海洋大学《材料与加工工艺》2023-2024学年第二学期期末试卷
- 大庆医学高等专科学校《医学免疫学与病原生物学实验》2023-2024学年第二学期期末试卷
- 石家庄科技信息职业学院《流体传动及控制》2023-2024学年第二学期期末试卷
- 四川现代职业学院《农业相关政策培训》2023-2024学年第二学期期末试卷
- 2024-2025年中国锂电池隔膜行业未来发展趋势分析及投资规划建议研究报告
- 软件系统项目实施方案(共3篇)
- 2025年山东药品食品职业学院高职单招职业技能测试近5年常考版参考题库含答案解析
- 2025年恩施市福牛物业有限公司招聘笔试参考题库含答案解析
- 《滚动轴承-》课件
- 2025年中国CAR-T免疫细胞治疗行业市场发展前景研究报告-智研咨询发布
- 妊娠期用药安全课件
- GB/T 44958-2024化工设备安全管理规范
- 中华人民共和国保守国家秘密法实施条例
- 《环境影响评价》全套教学课件
- XX小学法治副校长(派出所民警)法制教育课讲稿
评论
0/150
提交评论