云南省昆明市寻甸县联合乡中学2022-2023学年高二数学理联考试卷含解析_第1页
云南省昆明市寻甸县联合乡中学2022-2023学年高二数学理联考试卷含解析_第2页
云南省昆明市寻甸县联合乡中学2022-2023学年高二数学理联考试卷含解析_第3页
云南省昆明市寻甸县联合乡中学2022-2023学年高二数学理联考试卷含解析_第4页
云南省昆明市寻甸县联合乡中学2022-2023学年高二数学理联考试卷含解析_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省昆明市寻甸县联合乡中学2022-2023学年高二数学理联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.一个几何体的三视图如上图右图所示,则这个几何体的体积等于(

)A.

B.

C.

D.参考答案:A2.曲线:在点处的切线恰好经过坐标原点,则曲线直线,轴围成的图形面积为(

)A.

B.

C.

D.参考答案:D设,则曲线:在点处的切线为,因为切线恰好经过坐标原点,所以,所以切线为,所以曲线直线,轴围成的图形面积为。3.设x、y、z>0,,,,则a、b、c三数(

)A.都小于2 B.至少有一个不大于2C.都大于2 D.至少有一个不小于2参考答案:D【分析】利用基本不等式计算出,于此可得出结论.【详解】由基本不等式得,当且仅当时,等号成立,因此,若a、b、c三数都小于2,则与矛盾,即a、b、c三数至少有一个不小于2,故选D.【点睛】本题考查了基本不等式的应用,考查反证法的基本概念,解题的关键就是利用基本不等式求最值,考查分析问题和解决问题的能力,属于中等题.4.△ABC的内角A,B,C的对边分别为a,b,c,若c=,b=,B=120°,则角等于()A.

B.

C.

D.参考答案:B5.已知集合A={x|(x+1)(x﹣2)≤0},集合B为整数集,则A∩B=()A.{﹣1,0} B.{0,1} C.{﹣2,﹣1,0,1} D.{﹣1,0,1,2}参考答案:D【考点】交集及其运算.【分析】由题意,可先化简集合A,再求两集合的交集.【解答】解:A={x|(x+1)(x﹣2)≤0}={x|﹣1≤x≤2},又集合B为整数集,故A∩B={﹣1,0,1,2}故选D.6.已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的是()A.若α⊥γ,β⊥γ,则α∥βB.若m⊥α,n⊥α,则m∥nC.若m∥α,n∥α,则m∥nD.若m∥α,m∥β,则α∥β参考答案:A考点:空间中直线与平面之间的位置关系.专题:空间位置关系与距离.分析:利用空间中线线、线面、面面间的位置关系求解.解答:解:若α⊥γ,β⊥γ,则α与β相交或平行,故A正确;若m⊥α,n⊥α,则由直线与平面垂直的性质得m∥n,故B正确;若m∥α,n∥α,则m与n相交、平行或异面,故C错误;若m∥α,m∥β,则α与β相交或平行,故D错误.故选:A.点评:本题考查命题真假的判断,是中档题,解题时要注意空间思维能力的培养.7.把化为十进制数为(

A.20 B.12 C.10 D.11参考答案:C略8.若命题p为:?x∈R,2x≤0,则命题?p为()A.?x∈R,2x≤0 B.?x∈R,2x>0 C.?x∈R,2x≤0 D.?x∈R,2x>0参考答案:D【考点】特称命题.【分析】根据已知中命题p为:?x∈R,2x≤0,结合存在性命题的否定方法,我们易写出命题?p,得到答案.【解答】解:∵命题p为:?x∈R,2x≤0,∴命题?p为:?x∈R,2x>0,故选D9.如图所示茎叶图记录了甲乙两组各5名同学的数学成绩.甲组成绩中有一个数据模糊,无法确认,在图中以X表示.若两个小组的平均成绩相同,则下列结论正确的是()A.X=2,S甲2<S乙2 B.X=2,S甲2>S乙2C.X=6,S甲2<S乙2 D.X=6,2,S甲2>S乙2参考答案:A【考点】茎叶图.【分析】根据两个小组的平均成绩相同,得到甲乙两组的总和相同,建立方程即可解得X的值,利用数据集中的程度,可以判断两组的方差的大小.【解答】解:∵两个小组的平均成绩相同,∴80+X+72+74+74+63=81+83+70+65+66,解得:X=2,由茎叶图中的数据可知,甲组的数据都集中在72附近,而乙组的成绩比较分散,∴根据数据分布集中程度与方差之间的关系可得S甲2<S乙2,故选:A.10.运动会上,有6名选手参加100米比赛,观众甲猜测:4道或5道的选手得第一名;观众乙猜:3道的选手不可能得第一名;观众丙猜测:1,2,6道中的一位选手得第一名;观众丁猜测:4,5,6道的选手都不可能得第一名.比赛后发现没有并列名次,且甲、乙、丙、丁中只有1人猜对比赛结果,此人是()A.甲 B.乙 C.丙 D.丁参考答案:D【考点】F4:进行简单的合情推理.【分析】若甲对,则乙也对;若甲错乙对,则丙也对;由乙错知3道的选手得第一名,此时只有丁对.【解答】解:若甲对,则乙也对,故甲错;若甲错乙对,则丙也对,故乙错;由乙错知3道的选手得第一名,此时只有丁对.故选:D.二、填空题:本大题共7小题,每小题4分,共28分11.已知平行六面体ABCD﹣A1B1C1D1所有棱长均为1,∠BAD=∠BAA1=∠DAA1=60°,则AC1的长为.参考答案:【考点】棱柱的结构特征.【专题】计算题;转化思想;综合法;空间位置关系与距离.【分析】由已知得=,由此利用向量法能求出AC1的长.【解答】解:∵平行六面体ABCD﹣A1B1C1D1所有棱长均为1,∠BAD=∠BAA1=∠DAA1=60°,∴=,∴2=()2=+2||?||cos60°+2?||cos60°+2?cos60°=1+1+1+++=6,∴AC1的长为||=.故答案为:.【点评】本题考查线段长的求法,是基础题,解题时要认真审题,注意向量法的合理运用.12.正方形OABC的直观图是有一边边长为4的平行四边形O1A1B1C1,则正方形OABC的面积为参考答案:16或6413.若曲线在点(1,1)处的切线和曲线也相切,则实数的值为

.参考答案:14.在平面直角坐标系XOY中,给定两点M(-1,2)和N(1,4),点P在X轴上移动,当取最大值时,点P的横坐标为___________________。参考答案:解析:经过M、N两点的圆的圆心在线段MN的垂直平分线y=3-x上,设圆心为S(a,3-a),则圆S的方程为:

对于定长的弦在优弧上所对的圆周角会随着圆的半径减小而角度增大,所以,当取最大值时,经过M,N,P三点的圆S必与X轴相切于点P,即圆S的方程中的a值必须满足解得

a=1或a=-7。

即对应的切点分别为,而过点M,N,的圆的半径大于过点M,N,P的圆的半径,所以,故点P(1,0)为所求,所以点P的横坐标为1。15.在平面直角坐标系中,若圆上存在,两点关于点成中心对称,则直线的方程为

.参考答案:略16.一批热水器共有98台,其中甲厂生产的有56台,乙厂生产的有42台,用分层抽样从中抽出一个容量为14的样本,那么甲厂应抽得的热水器的台数是▲.参考答案:817.已知函数,(、且是常数).若是从、、、四个数中任取的一个数,是从、、三个数中任取的一个数,则函数为奇函数的概率是____________.

参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.设函数f(x)=ln(1+x),g(x)=xf′(x),x≥0,其中f′(x)是f(x)的导函数.(Ⅰ)令g1(x)=g(x),gn+1(x)=g(gn(x)),n∈N+,求gn(x)的表达式;(Ⅱ)若f(x)≥ag(x)恒成立,求实数a的取值范围;(Ⅲ)设n∈N+,比较g(1)+g(2)+…+g(n)与n﹣f(n)的大小,并加以证明.参考答案:【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)由已知,,…可得用数学归纳法加以证明;(Ⅱ)由已知得到ln(1+x)≥恒成立构造函数φ(x)=ln(1+x)﹣(x≥0),利用导数求出函数的最小值即可;(Ⅲ)在(Ⅱ)中取a=1,可得,令则,n依次取1,2,3…,然后各式相加即得到不等式.【解答】解:由题设得,(Ⅰ)由已知,,…可得下面用数学归纳法证明.①当n=1时,,结论成立.②假设n=k时结论成立,即,那么n=k+1时,=即结论成立.由①②可知,结论对n∈N+成立.(Ⅱ)已知f(x)≥ag(x)恒成立,即ln(1+x)≥恒成立.设φ(x)=ln(1+x)﹣(x≥0),则φ′(x)=,当a≤1时,φ′(x)≥0(仅当x=0,a=1时取等号成立),∴φ(x)在[0,+∞)上单调递增,又φ(0)=0,∴φ(x)≥0在[0,+∞)上恒成立.∴当a≤1时,ln(1+x)≥恒成立,(仅当x=0时等号成立)当a>1时,对x∈(0,a﹣1]有φ′(x)<0,∴φ(x)在∈(0,a﹣1]上单调递减,∴φ(a﹣1)<φ(0)=0即当a>1时存在x>0使φ(x)<0,故知ln(1+x)≥不恒成立,综上可知,实数a的取值范围是(﹣∞,1].(Ⅲ)由题设知,g(1)+g(2)+…+g(n)=,n﹣f(n)=n﹣ln(n+1),比较结果为g(1)+g(2)+…+g(n)>n﹣ln(n+1)证明如下:上述不等式等价于,在(Ⅱ)中取a=1,可得,令则故有,ln3﹣ln2,…,上述各式相加可得结论得证.19.如图,在三棱锥A-BCD中,已知都是边长为2的等边三角形,E为BD中点,且平面BCD,F为线段AB上一动点,记.(1)当时,求异面直线DF与BC所成角的余弦值;(2)当CF与平面ACD所成角的正弦值为时,求的值.参考答案:(1)(2)分析:(1)建立空间直角坐标系,设立各点坐标,根据向量数量积求向量夹角,最后根据线线角与向量夹角相等或互补得结果,(2)建立空间直角坐标系,设立各点坐标,利用方程组求平面的一个法向量,再根据向量数量积求向量夹角,最后根据线面角与向量夹角互余列等量关系,解得结果,详解:连接CE,以分别为轴,建立如图空间直角坐标系,

则,因为F为线段AB上一动点,且,则,所以.(1)当时,,,所以.

(2),设平面的一个法向量为=由,得,化简得,取设与平面所成角为,则.解得或(舍去),所以.点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.20.已知命题p:“存在”,命题q:“曲线表示焦点在x轴上的椭圆”,命题s:“曲线表示双曲线”(1)若“p且q”是真命题,求m的取值范围;(2)若q是s的必要不充分条件,求t的取值范围.参考答案:【考点】必要条件、充分条件与充要条件的判断;复合命题的真假.[来源:Zxxk.Com]【专题】简易逻辑.【分析】(1)若“p且q”是真命题,则p,q同时为真命题,建立条件关系,即可求m的取值范围;(2)根据q是s的必要不充分条件,建立条件关系,即可求t的取值范围.【解答】解:(1)若p为真:…(1分)解得m≤﹣1或m≥3…(2分)若q为真:则…(3分)解得﹣4<m<﹣2或m>4…(4分)若“p且q”是真命题,则…(6分)解得﹣4<m<﹣2或m>4…(7分)(2)若s为真,则(m﹣t)(m﹣t﹣1)<0,即t<m<t+1…(8分)由q是s的必要不充分条件,则可得{m|t<m<t+1}?{m|﹣4<m<﹣2或m>4}…(9分)即或t≥4…(11分)解得﹣4≤t≤﹣3或t≥4…(12分)【点评】本题主要考查充分条件和必要条件的应用,利用数轴是解决本题的关键,考查学生的推理能力.21.已知,命题,命题.⑴若命题为真命题,求实数的取值范围;⑵若命题为真命题,命题为假命题,求实数的取值范围.参考答案:解:⑴因为命题,令,根据题意,只要时,即可,

也就是;

⑵由⑴可知,当命题p为真命题时,,命题q为真命题时,,解得

因为命题为真命题,命题为假命题,所以命题p与命题q一真一假,当命题p为真,命题q为假时,,当命题p为假,命题q为真时,,综上:或.略22.设函数.(Ⅰ)求不等式的解集;(Ⅱ)求证:,并求等号成立的条件.参考答案:(Ⅰ)(Ⅱ)见证明【分析】(Ⅰ)利用零点分类法,进行分类

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论