云南省大理市第四中学2022-2023学年高二数学文上学期期末试卷含解析_第1页
云南省大理市第四中学2022-2023学年高二数学文上学期期末试卷含解析_第2页
云南省大理市第四中学2022-2023学年高二数学文上学期期末试卷含解析_第3页
云南省大理市第四中学2022-2023学年高二数学文上学期期末试卷含解析_第4页
云南省大理市第四中学2022-2023学年高二数学文上学期期末试卷含解析_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省大理市第四中学2022-2023学年高二数学文上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.在△ABC中,若a=7,b=8,cosC=,则最大角的余弦值是()A. B. C. D.参考答案:C【考点】余弦定理;正弦定理.【专题】计算题;解三角形.【分析】利用余弦定理c2=a2+b2﹣2abcosC的式子,结合题意算出c=3,从而得到b为最大边,算出cosB的值即可得到最大角的余弦之值.【解答】解:∵在△ABC中,,∴c2=a2+b2﹣2abcosC=49+64﹣2×7×8×=9,得c=3∵b>a>c,∴最大边为b,可得B为最大角因此,cosB==,即最大角的余弦值为故选:C【点评】本题给出三角形的两边和夹角,求最大角的余弦.着重考查了三角形中大边对大角、利用余弦定理解三角形的知识,属于基础题.2.函数的一个单调递增区间是(

) A.

B.

C.

D.参考答案:A3.若直线y=kx﹣k交抛物线y2=4x于A,B两点,且线段AB中点到y轴的距离为3,则|AB|=()A.12 B.10 C.8 D.6参考答案:C【考点】直线与圆锥曲线的关系.【分析】根据抛物线的方程求出准线方程,利用抛物线的定义抛物线上的点到焦点的距离等于到准线的距离,列出方程求出A,B的中点横坐标,求出线段AB的中点到y轴的距离.【解答】解:直线y=kx﹣k恒过(1,0),恰好是抛物线y2=4x的焦点坐标,设A(x1,y1)B(x2,y2)抛物y2=4x的线准线x=﹣1,线段AB中点到y轴的距离为3,x1+x2=6,∴|AB|=|AF|+|BF|=x1+x2+2=8,故选:C.4.若椭圆的焦点分别为,弦过点,则的周长为A. B. C.8 D.参考答案:C略5.我国古代名著《九章算术》用“辗转相除法”求两个正整数的最大公约数是一个伟大创举.其程序框图如图,当输入a=1995,b=228时,输出的()A.17 B.19 C.27 D.57参考答案:D【考点】EF:程序框图.【分析】模拟程序框图的运行过程,该程序执行的是欧几里得辗转相除法,求出运算结果即可.【解答】解:模拟程序框图的运行过程,如下;a=1995,b=228,执行循环体,r=171,a=228,b=171,不满足退出循环的条件,执行循环体,r=57,a=171,b=57,不满足退出循环的条件,执行循环体,r=0,a=57,b=0,满足退出循环的条件r=0,退出循环,输出a的值为57.故选:D.6.下列命题中真命题的个数是(

)①?x∈R,x4>x2;②若p∧q是假命题,则p、q都是假命题;③命题“?x∈R,x3+2x2+4≤0”的否定为“?x0∈R,x03+2x02+4>0”A.0 B.1 C.2 D.3参考答案:B考点:命题的真假判断与应用.专题:转化思想;反证法;简易逻辑.分析:①不正确,例如取x=,则;②由p∧q是假命题,则p、q至少有一个是假命题,即可判断出真假;③利用命题的否定定义即可判断出正误.解答:解:①?x∈R,x4>x2,不正确,例如取x=,则;②若p∧q是假命题,则p、q至少有一个是假命题,因此不正确;③命题“?x∈R,x3+2x2+4≤0”的否定为“?x0∈R,x03+2x02+4>0”,正确.因此真命题的个数是1.故选:B.点评:本题考查了简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题7.一个圆柱的轴截面为正方形,其体积与一个球的体积之比是3:2,则这个圆柱的侧面积与这个球的表面积之比为(

)A

1:1

B

1:

C

:

D

3:2参考答案:A8.等差数列中,,则=(

)A.15

B.30

C.31

D.64参考答案:A9.在平行四边形中,等于

参考答案:A,故选.10.设点P对应的复数为﹣3+3i,以原点为极点,实轴正半轴为极轴建立极坐标系,则点P的极坐标为()A.(,) B.(,) C.(3,) D.(﹣3,)参考答案:A【考点】Q6:极坐标刻画点的位置.【分析】先求出点P的直角坐标,P到原点的距离r,根据点P的位置和极角的定义求出极角,从而得到点P的极坐标.【解答】解:∵点P对应的复数为﹣3+3i,则点P的直角坐标为(﹣3,3),点P到原点的距离r=3,且点P第二象限的平分线上,故极角等于,故点P的极坐标为(,),故选A.【点评】本题考查把直角坐标化为极坐标的方法,复数与复平面内对应点间的关系,求点P的极角是解题的难点.二、填空题:本大题共7小题,每小题4分,共28分11.已知,右图给出了一个算法流程图。若输入

,,,则输出的=

(填数值)参考答案:12.在等差数列{an}中,则取得最小值时的n=_______参考答案:9令an=3n-28≤0,解得,即当n9(n)时,,故取得最小值时的.

13.函数的定义域为__________.参考答案:且【分析】解不等式即得函数的定义域.【详解】由题得,解之得且x≠3.故答案为:且【点睛】本题主要考查函数定义域的求法,意在考查学生对该知识的理解掌握水平和分析推理能力.14.设空间两个单位向量,与向量的夹角都等于,则

参考答案:略15.在社会主义新农村建设中,某市决定在一个乡镇投资农产品加工、绿色蔬菜种植和水果种植三个项目,据预测,三个项目成功的概率分别为,,,且三个项目是否成功互相独立.则至少有一个项目成功的概率为_______.参考答案:【分析】首先求出对立事件的概率,根据对立事件概率公式求得结果.【详解】记事件为“至少有一个项目成功”,则本题正确选项:【点睛】本题考查对立事件概率的求解问题,属于基础题.16.设是定义在R上的偶函数,对任意,都有,且当时,.在区间(-2,6]内关于x的方程恰有3个不同的实数根,则实数a的取值范围是_____.参考答案:【分析】根据指数函数的图象可画出:当﹣6的图象.根据偶函数的对称性质画出[0,2]的图象,再根据周期性:对任意x∈R,都有f(x+4)=f(x),画出[2,6]的图象.画出函数y=loga(x+2)(a>1)的图象.利用在区间(﹣2,6]内关于x的f(x)﹣loga(x+2)=0(a>1)恰有3个不同的实数根,即可得出.【详解】如图所示,当﹣6,可得图象.根据偶函数的对称性质画出[0,2]的图象,再据周期性:对任意x∈R,都有f(x+4)=f(x),画出[2,6]的图象.画出函数y=loga(x+2)(a>1)的图象.∵在区间(﹣2,6]内关于x的f(x)﹣loga(x+2)=0(a>1)恰有3个不同的实数根,∴loga8>3,loga4<3,∴4<a3<8,解得<a<2.故答案为:【点睛】本题考查了指数函数图象与性质、函数的奇偶性、周期性,考查了方程的实数根转化为函数图象的交点个数,考查了数形结合的思想方法,考查了推理能力与计算能力,属于难题.

17.数列的前n项和是

.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分10分)如图,在正方体中,为棱的中点.(Ⅰ)∥平面;(Ⅱ)求证:.参考答案:(Ⅰ)证明:连接交于,连接,∵分别为,的中点,∥,∵∥平面.(Ⅱ)证明:∵∵19..已知函数.(1)求f(x)的单调区间;(2)证明:当时,方程在区间(1,+∞)上只有一个解;(3)设,其中.若恒成立,求a的取值范围.参考答案:(1)由已知.所以,在区间上,函数在上单调递减,在区间上,函数在区间上单调递增.(2)设,.,由(1)知,函数在区间上单调递增.且,.所以,在区间上只有一个零点,方程在区间上只有一个解.(3)设,,定义域为,,令,则,由(2)知,在区间上只有一个零点,是增函数,不妨设的零点为,则,所以,与在区间上的情况如下:-0+所以,函数的最小值为,,由,得,所以.依题意,即,解得,所以,的取值范围为.20.在求两个变量x和y的线性回归方程过程中,计算得=25,=250,=145,=1380,则该回归方程是

参考答案:21.(12)已知函数.(1)当时,求曲线在点处的切线方程;(2)当时,讨论的单调性参考答案:解1):

-------------------------------------2

--------------------------------------------------4---------------------62)定义域为--------(在结果中体现定义域同样给分)-----------------7-----------------------8-------10---11--------------------12略22.某校从高一年级学生中随机抽取100名学生,将他们期中考试的数学成绩(均为整数)分成六段:[40,50),[50,60),…,[90,100]后得到频率分布直方图(如图所示),(1)求分数在[70,80)中的人数;(2)若用分层抽样的方法从分数在[40,50)和[50,60)的学生中共抽取5人,该5人中成绩在[40,50)的有几人;(3)在(2)中抽取的5人中,随机抽取2人,求分数在[40,50)和[50,60)各1人的概率.参考答案:【考点】列举法计算基本事件数及事件发生的概率;频率分布直方图.【分析】(1)由频率分布直方图先求出分数在[70,80)内的概率,由此能求出分数在[70,80)中的人数.(2)分数在[40,50)的学生有10人,分数在[50,60)的学生有15人,由此能求出用分层抽样的方法从分数在[40,50)和[50,60)的学生中共抽取5人,抽取的5人中分数在[40,50)的人数.(3)用分层抽样的方法从分数在[40,50)和[50,60)的学生中共抽取5人,抽取的5人中分数在[40,50)的有2人分数在[50,60)的有3人,由此利用等可能事件概率计算公式能求出分数在[40,50)和[50,60)各1人的概率.【解答】解:(1)由频率分布直方图知小长方形面积为对应区间概率,所有小长方形面积和为1,因此分数在[70,80)内的概率为:1﹣(0.005+0.010+0.015×2+0.025)×10=0.3,∴分数在[70,80)中的人数为:0.3×100=30人.…5分(2)分数在[40,50)的学生有:0.010×10×100=10人,分数在[50,60)的学生有:0.015×10×100=15人,用分层抽样的方法从分数在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论