版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022高考数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.执行如图所示的程序框图,则输出的的值为()A. B.C. D.2.已知排球发球考试规则:每位考生最多可发球三次,若发球成功,则停止发球,否则一直发到次结束为止.某考生一次发球成功的概率为,发球次数为,若的数学期望,则的取值范围为()A. B. C. D.3.已知复数,则的虚部是()A. B. C. D.14.已知△ABC中,.点P为BC边上的动点,则的最小值为()A.2 B. C. D.5.若(1+2ai)i=1-bi,其中a,b∈R,则|a+bi|=().A. B. C. D.56.已知实数,满足约束条件,则目标函数的最小值为A. B.C. D.7.如图,中,点D在BC上,,将沿AD旋转得到三棱锥,分别记,与平面ADC所成角为,,则,的大小关系是()A. B.C.,两种情况都存在 D.存在某一位置使得8.如图所示,网格纸上小正方形的边长为1,粗线画出的是由一个棱柱挖去一个棱锥后的几何体的三视图,则该几何体的体积为A.72 B.64 C.48 D.329.已知,若对任意,关于x的不等式(e为自然对数的底数)至少有2个正整数解,则实数a的取值范围是()A. B. C. D.10.已知双曲线(,)的左、右顶点分别为,,虚轴的两个端点分别为,,若四边形的内切圆面积为,则双曲线焦距的最小值为()A.8 B.16 C. D.11.已知双曲线的左、右焦点分别为,圆与双曲线在第一象限内的交点为M,若.则该双曲线的离心率为A.2 B.3 C. D.12.命题“”的否定为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.命题“对任意,”的否定是.14.已知函数,则曲线在处的切线斜率为________.15.的展开式中的系数为____.16.已知椭圆的左右焦点分别为,过且斜率为的直线交椭圆于,若三角形的面积等于,则该椭圆的离心率为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,圆的参数方程为(为参数),以为极点,轴的非负半轴为极轴建立极坐标系.(1)求圆的极坐标方程;(2)直线的极坐标方程是,射线与圆的交点为、,与直线的交点为,求线段的长.18.(12分)若正数满足,求的最小值.19.(12分)已知抛物线的准线过椭圆C:(a>b>0)的左焦点F,且点F到直线l:(c为椭圆焦距的一半)的距离为4.(1)求椭圆C的标准方程;(2)过点F做直线与椭圆C交于A,B两点,P是AB的中点,线段AB的中垂线交直线l于点Q.若,求直线AB的方程.20.(12分)已知函数.(1)当时,解关于的不等式;(2)若对任意,都存在,使得不等式成立,求实数的取值范围.21.(12分)如图,在平面直角坐标系xOy中,已知椭圆的离心率为,且过点.为椭圆的右焦点,为椭圆上关于原点对称的两点,连接分别交椭圆于两点.⑴求椭圆的标准方程;⑵若,求的值;⑶设直线,的斜率分别为,,是否存在实数,使得,若存在,求出的值;若不存在,请说明理由.22.(10分)已知函数.(1)当时,求函数的值域.(2)设函数,若,且的最小值为,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【解析】
列出循环的每一步,进而可求得输出的值.【详解】根据程序框图,执行循环前:,,,执行第一次循环时:,,所以:不成立.继续进行循环,…,当,时,成立,,由于不成立,执行下一次循环,,,成立,,成立,输出的的值为.故选:B.【点睛】本题考查的知识要点:程序框图的循环结构和条件结构的应用,主要考查学生的运算能力和转换能力,属于基础题型.2.A【解析】
根据题意,分别求出再根据离散型随机变量期望公式进行求解即可【详解】由题可知,,,则解得,由可得,答案选A【点睛】本题考查离散型随机变量期望的求解,易错点为第三次发球分为两种情况:三次都不成功、第三次成功3.C【解析】
化简复数,分子分母同时乘以,进而求得复数,再求出,由此得到虚部.【详解】,,所以的虚部为.故选:C【点睛】本小题主要考查复数的乘法、除法运算,考查共轭复数的虚部,属于基础题.4.D【解析】
以BC的中点为坐标原点,建立直角坐标系,可得,设,运用向量的坐标表示,求得点A的轨迹,进而得到关于a的二次函数,可得最小值.【详解】以BC的中点为坐标原点,建立如图的直角坐标系,可得,设,由,可得,即,则,当时,的最小值为.故选D.【点睛】本题考查向量数量积的坐标表示,考查转化思想和二次函数的值域解法,考查运算能力,属于中档题.5.C【解析】试题分析:由已知,-2a+i=1-bi,根据复数相等的充要条件,有a=-,b=-1所以|a+bi|=,选C考点:复数的代数运算,复数相等的充要条件,复数的模6.B【解析】
作出不等式组对应的平面区域,目标函数的几何意义为动点到定点的斜率,利用数形结合即可得到的最小值.【详解】解:作出不等式组对应的平面区域如图:目标函数的几何意义为动点到定点的斜率,当位于时,此时的斜率最小,此时.故选B.【点睛】本题主要考查线性规划的应用以及两点之间的斜率公式的计算,利用z的几何意义,通过数形结合是解决本题的关键.7.A【解析】
根据题意作出垂线段,表示出所要求得、角,分别表示出其正弦值进行比较大小,从而判断出角的大小,即可得答案.【详解】由题可得过点作交于点,过作的垂线,垂足为,则易得,.设,则有,,,可得,.,,;,;,,,.综上可得,.故选:.【点睛】本题考查空间直线与平面所成的角的大小关系,考查三角函数的图象和性质,意在考查学生对这些知识的理解掌握水平.8.B【解析】
由三视图可知该几何体是一个底面边长为4的正方形,高为5的正四棱柱,挖去一个底面边长为4,高为3的正四棱锥,利用体积公式,即可求解。【详解】由题意,几何体的三视图可知该几何体是一个底面边长为4的正方形,高为5的正四棱柱,挖去一个底面边长为4,高为3的正四棱锥,所以几何体的体积为,故选B。【点睛】本题考查了几何体的三视图及体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线。求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应公式求解。9.B【解析】
构造函数(),求导可得在上单调递增,则,问题转化为,即至少有2个正整数解,构造函数,,通过导数研究单调性,由可知,要使得至少有2个正整数解,只需即可,代入可求得结果.【详解】构造函数(),则(),所以在上单调递增,所以,故问题转化为至少存在两个正整数x,使得成立,设,,则,当时,单调递增;当时,单调递增.,整理得.故选:B.【点睛】本题考查导数在判断函数单调性中的应用,考查不等式成立问题中求解参数问题,考查学生分析问题的能力和逻辑推理能力,难度较难.10.D【解析】
根据题意画出几何关系,由四边形的内切圆面积求得半径,结合四边形面积关系求得与等量关系,再根据基本不等式求得的取值范围,即可确定双曲线焦距的最小值.【详解】根据题意,画出几何关系如下图所示:设四边形的内切圆半径为,双曲线半焦距为,则所以,四边形的内切圆面积为,则,解得,则,即故由基本不等式可得,即,当且仅当时等号成立.故焦距的最小值为.故选:D【点睛】本题考查了双曲线的定义及其性质的简单应用,圆锥曲线与基本不等式综合应用,属于中档题.11.D【解析】
本题首先可以通过题意画出图像并过点作垂线交于点,然后通过圆与双曲线的相关性质判断出三角形的形状并求出高的长度,的长度即点纵坐标,然后将点纵坐标带入圆的方程即可得出点坐标,最后将点坐标带入双曲线方程即可得出结果。【详解】根据题意可画出以上图像,过点作垂线并交于点,因为,在双曲线上,所以根据双曲线性质可知,,即,,因为圆的半径为,是圆的半径,所以,因为,,,,所以,三角形是直角三角形,因为,所以,,即点纵坐标为,将点纵坐标带入圆的方程中可得,解得,,将点坐标带入双曲线中可得,化简得,,,,故选D。【点睛】本题考查了圆锥曲线的相关性质,主要考察了圆与双曲线的相关性质,考查了圆与双曲线的综合应用,考查了数形结合思想,体现了综合性,提高了学生的逻辑思维能力,是难题。12.C【解析】
套用命题的否定形式即可.【详解】命题“”的否定为“”,所以命题“”的否定为“”.故选:C【点睛】本题考查全称命题的否定,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.存在,使得【解析】试题分析:根据命题否定的概念,可知命题“对任意,”的否定是“存在,使得”.考点:命题的否定.14.【解析】
求导后代入可构造方程求得,即为所求斜率.【详解】,,解得:,即在处的切线斜率为.故答案为:.【点睛】本题考查切线斜率的求解问题,考查导数的几何意义,属于基础题.15.28【解析】
将已知式转化为,则的展开式中的系数中的系数,根据二项式展开式可求得其值.【详解】,所以的展开式中的系数就是中的系数,而中的系数为,展开式中的系数为故答案为:28.【点睛】本题考查二项式展开式中的某特定项的系数,关键在于将原表达式化简将三项的幂的形式转化为可求的二项式的形式,属于基础题.16.【解析】
由题得直线的方程为,代入椭圆方程得:,设点,则有,由,且解出,进而求解出离心率.【详解】由题知,直线的方程为,代入消得:,设点,则有,,而,又,解得:,所以离心率.故答案为:【点睛】本题主要考查了直线与椭圆的位置关系,三角形面积计算与离心率的求解,考查了学生的运算求解能力三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(2)【解析】
(1)首先将参数方程转化为普通方程再根据公式化为极坐标方程即可;(2)设,,由,即可求出,则计算可得;【详解】解:(1)圆的参数方程(为参数)可化为,∴,即圆的极坐标方程为.(2)设,由,解得.设,由,解得.∵,∴.【点睛】本题考查了利用极坐标方程求曲线的交点弦长,考查了推理能力与计算能力,属于中档题.18.【解析】试题分析:由柯西不等式得,所以试题解析:因为均为正数,且,所以.于是由均值不等式可知,当且仅当时,上式等号成立.从而.故的最小值为.此时.考点:柯西不等式19.(1);(2)或.【解析】
(1)由抛物线的准线方程求出的值,确定左焦点坐标,再由点F到直线l:的距离为4,求出即可;(2)设直线方程,与椭圆方程联立,运用根与系数关系和弦长公式,以及两直线垂直的条件和中点坐标公式,即可得到所求直线的方程.【详解】(1)抛物线的准线方程为,,直线,点F到直线l的距离为,,所以椭圆的标准方程为;(2)依题意斜率不为0,又过点,设方程为,联立,消去得,,,设,,,,线段AB的中垂线交直线l于点Q,所以横坐标为3,,,,平方整理得,解得或(舍去),,所求的直线方程为或.【点睛】本题考查椭圆的方程以及直线与椭圆的位置关系,要熟练应用根与系数关系、相交弦长公式,合理运用两点间的距离公式,考查计算求解能力,属于中档题.20.(1);(2).【解析】
(1)分类讨论去绝对值号,然后解不等式即可.(2)因为对任意,都存在,使得不等式成立,等价于,根据绝对值不等式易求,根据二次函数易求,然后解不等式即可.【详解】解:(1)当时,,则当时,由得,,解得;当时,恒成立;当时,由得,,解得.所以的解集为(2)对任意,都存在,得成立,等价于.因为,所以,且|,①当时,①式等号成立,即.又因为,②当时,②式等号成立,即.所以,即即的取值范围为:.【点睛】知识:考查含两个绝对值号的不等式的解法;恒成立问题和存在性问题求参变数的范围问题;能力:分析问题和解决问题的能力以及运算求解能力;中档题.21.(1)(2)(3)【解析】试题分析:(1);(2)由椭圆对称性,知,所以,此时直线方程为,故.(3)设,则,通过直线和椭圆方程,解得,,所以,即存在.试题解析:(1)设椭圆方程为,由题意知:解之得:,所以椭圆方程为:(2)若,由椭圆对称性,知,所以,此时直线方程为,由,得,解得(舍去),故.(3)设,则,直线的方程为,代入椭圆方程,得,因为是该方程的一个解,所以点的横坐标,又在直线上,所以,同理,点坐标为,,所以,即存在,使得.22.(1);(2).【解析】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 云服务器租用及托管服务合同
- 2024年度工程咨询与项目管理居间服务合同3篇
- 2024版承揽合同与雇佣合同签订注意事项揭秘2篇
- 2024年办公室装修绿色建材采购合同3篇
- 2024年度绿色建筑承包商专项贷款合同样本2篇
- 2024年度工业厂房资产转让与使用权租赁合同3篇
- 2024版场项目投标失败后合同管理信息化建设合同3篇
- 2024年度砂石料环保处理合同2篇
- 2024版智能家居设备买卖与租赁服务合同范本3篇
- 2024年教育机构教学质量担保合同2篇
- 国家开放大学电大《机械制造基础》机考5套标准试题及答案1
- 甘肃省定西市临洮县2023-2024学年七年级下学期期中语文试题
- 护理健康教育改进措施(3篇模板)
- 南京市鼓楼区2023-2024学年九年级上学期期末英语试卷
- 员工反腐败与合规培训制度
- 2024年04月江苏信息职业技术学院招考聘用9人笔试笔试历年典型考题及考点研判与答案解析
- GB/T 26527-2024有机硅消泡剂
- 雅思英语1智慧树知到期末考试答案章节答案2024年嘉兴大学
- 代码走查检查单
- 应急医疗救援无人机系统
- 2022-2023学年广东省汕头市八年级(上)期末数学试卷【含答案】
评论
0/150
提交评论