DNA重组的技术基本工具_第1页
DNA重组的技术基本工具_第2页
DNA重组的技术基本工具_第3页
DNA重组的技术基本工具_第4页
DNA重组的技术基本工具_第5页
已阅读5页,还剩46页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

会计学1DNA重组的技术基本工具每100kg猪或牛的胰腺中仅可提取4~5g。

1979年,美国将人的胰岛素基因重组到大肠杆菌内,实现了细菌生产胰岛素,大大降低了生产成本。治疗糖尿病特效药——

据WTO调查:

2005年全世界约有糖尿病患者1.8亿人,我国约6000万。胰岛素思考:转基因技术实现了一种生物的某些性状在另一种生物中表达。这些性状的表达与我们学过的基因的什么过程有关?密码子在生物界是的!DNA(基因)

mRNA蛋白质(性状)转录翻译通用第1页/共51页基因工程的产物第2页/共51页什么叫基因工程?

基因工程是指按照人们的愿望,进行严格的设计,并通过体外DNA重组和转基因等技术,赋予生物以新的遗传特性,从而创造出更符合人们需要的新的生物类型和生物产品。由于基因工程是在DNA分子水平上进行设计和施工的,因此又叫做DNA重组技术。基因工程的概念第3页/共51页补充:对基因工程概念的理解别名:基因拼接技术,DNA重组技术操作环境:生物体外操作对象:基因操作水平:DNA分子水平基本过程:剪切→拼接→导入→表达结果:人类需要的基因产物第4页/共51页基因工程得以实现的理论基础:(1)所有生物DNA的化学组成和结构相同。(为不同种生物DNA拼接成功提供物质基础)(2)所有生物共用一套遗传密码子。(为某生物的基因能够在其他生物细胞内正常指导蛋白质合成提供可能。)都是以4种脱氧核苷酸为基本单位都是双螺旋结构第5页/共51页问题探讨:苏云金芽孢杆菌含有一种可以合成毒蛋白的基因。让细菌的毒蛋白基因在棉花细胞中表达,可培育出抵抗棉铃虫害的抗虫棉。

想一想需要做哪些关键工作?苏云金芽孢杆菌毒蛋白普通棉花抗虫棉第6页/共51页基因工程培育抗虫棉的简要过程:在以上过程中关键步骤或难点是什么?普通棉花(无抗虫特性)苏云金芽孢杆菌提取抗虫基因通过运载体导入转基因棉花含抗虫基因转基因棉花产生伴胞晶体转基因棉花有抗虫特性第7页/共51页基因工程培育抗虫棉的关键步骤:关键步骤一:抗虫基因从苏云金芽孢杆菌细胞内提取出来关键步骤二:抗虫基因与棉花DNA“缝合”关键步骤三:抗虫基因进入棉花细胞第8页/共51页解决培育抗虫棉的关键步骤需要哪些工具?“分子手术刀”——限制性核酸内切酶关键步骤一:抗虫基因从苏云金芽孢杆菌细胞内提取出来关键步骤二:抗虫基因与棉花DNA“缝合”关键步骤三:抗虫基因进入棉花细胞“分子缝合针”——DNA连接酶“分子运输车”——基因进入受体细胞的载体1.1、DNA重组技术的基本工具第9页/共51页一、限制性核酸内切酶——“分子手术刀”1.主要来源:⒉种类与命名:⒊作用特点:4.限制酶识别序列5.作用结果:

识别双链DNA分子的某种特定核苷酸序列,并且使每条链中特定部位的两个核苷酸之间的磷酸二酯键断开。主要从原核生物中分离纯化产生黏性末端或平末端Goon大多数限制酶的识别序列由6个核苷酸组成少数的识别序列由4、5或8个核苷酸组成第10页/共51页寻根问底你能推测限制酶存在于原核生物中的作用是是什么吗?

原核生物易受自然界外源DNA的入侵,但生物在长期的进化过程中形成了一套完善的防御机制,以防止外来病原物的侵害。限制酶就是细菌的一种防御性工具,当外源DNA侵入时,会利用限制酶将外源DNA切割掉,以保证自身的安全。所以,限制酶在原核生物中主要起到切割外源DNA、使之失效,从而达到保护自身的目的。Goback第11页/共51页⒉种类与命名:

现在已经从约300种微生物中分离出了约4000种限制性内切酶(限制酶)。EcoRⅠSmaⅠ粘质沙雷氏杆菌(Serratiamarcesens)大肠杆菌(EscherichiacoliR)Goback练习:流感嗜血杆菌的d菌株(Haemophilusinfluenzaed)中先后分离到3种限制酶,则分别命名为:HindⅠ、HindⅡ和HindⅢ第12页/共51页磷酸二酯键T12345A12345HHHHHOT12345A12345HHHHOH2O+第13页/共51页O第14页/共51页DNA分子切割DNA分子实质是断开两个核苷酸之间的磷酸二酯键。补充:脱氧核苷酸中脱氧核糖的五个碳原子和氧原子的定位。1234512OO图1-2第15页/共51页限制酶DNA解旋酶区别限制性内切酶与DNA解旋酶的区别切割特定的核苷酸序列的磷酸二酯键将DNA两条链的氢键打开形成两条单链限制酶DNA水解酶区别限制性内切酶与DNA水解酶的区别切割特定的核苷酸序列的磷酸二酯键,形成片段的DNA.切割磷酸二酯键,形成单个的脱氧核苷酸。Goback第16页/共51页限制酶的识别序列:能被限制性内切酶特异性识别的切割部位都具有回文序列:在切割部位,一条链正向读的碱基顺序与另一条链反向读的顺序完全一致。Goback第17页/共51页

EcoRⅠ黏性末端黏性末端Goback第18页/共51页

EcoRⅠ黏性末端黏性末端重复演示Goback第19页/共51页什么叫黏性末端?

被限制酶切开的DNA两条单链的切口,带有几个伸出的核苷酸,它们之间正好互补配对,这样的切口叫黏性末端。第20页/共51页SmaⅠ平末端平末端第21页/共51页……GAATTC…………CTTAAG…………GAATTC…………CTTAAG……EcoRⅠ……GAATTC…………CTTAAG…………GAATTC…………CTTAAG……不同来源的DNA片段混合将不同种来源的DNA片段连接起来生物A基因片段生物B基因片段……G

AATTC…………CTTAA

G……酶切……GAATTC…………CTTAAG…………G

AATTC…………CTTAA

G…………G

AATTC…………CTTAA

G……同一种第22页/共51页DNA聚合酶DNA连接酶区别1区别2相同点寻根问底DNA连接酶与DNA聚合酶是一回事吗?为什么?1)只能将单个核苷酸连接到已有的核酸片段上,形成磷酸二酯键形成磷酸二酯键1)在两个DNA片段之间形成磷酸二酯键2)以一条DNA链为模板,将单个核苷酸通过磷酸二酯键连接成一条互补的DNA链2)将DNA双链上的两个缺口同时连接起来,不需要模板第23页/共51页

可把黏性末端之间的缝隙“缝合”起来,E·coliDNA连接酶或T4DNA连接酶即恢复被限制酶切开的两个核苷酸之间的磷酸二酯键第24页/共51页

T4DNA连接酶还可把平末端之间的缝隙“缝合”起来,但效率较低T4DNA连接酶第25页/共51页二、“分子缝合针”

——DNA连接酶①作用:

把切下来的DNA片段拼接成新的DNA,即将脱氧核糖和磷酸连接起来.②作用原理:催化磷酸二酯键形成第26页/共51页③类型:类型E·coliDNA连接酶T4DNA连接酶来源功能大肠杆菌T4噬菌体恢复磷酸二酯键只能连接黏性末端能连接黏性末端和平末端(效率较低)相同点差别第27页/共51页三、“分子运输车”

——基因进入受体细胞的载体⒈载体需要的条件:⑴有1~多个限制酶切点⑵对受体细胞无害⑶导入基因能在受体细胞中复制、表达⑷有某些标记基因,便于筛选⒉常用运载体:⑴细菌的质粒⑵λ噬菌体衍生物或某些动植物病毒⑶假如目的基因导入受体细胞后不能复制或不能转录,转基因生物能有预想的效果吗?⑴作为分子运输车——载体,如果没有切割位点将会怎样?⑵霍乱菌的质粒多个限制酶切点,你会用它来做分子运输车吗?

⑷目的基因有没有进入受体细胞,如何去发现?

第28页/共51页常用的载体:质粒能复制并带着插入的目的基因一起复制有切割位点有标记基因的存在,可用含氨苄青霉素的培养基鉴别第29页/共51页第30页/共51页思考与探究P7(2)为什么限制酶不剪切细菌本身的DNA?

通过长期的进化,细菌中含有某种限制酶的细胞,其DNA分子中或者不具备这种限制酶的识别切割序列;或者通过甲基化酶将甲基转移到所识别序列的碱基上,使限制酶不能将其切开。这样,尽管细菌中含有某种限制酶也不会使自身的DNA被切断,并且可以防止外源DNA的入侵。第31页/共51页3、天然的DNA分子可以直接用做基因工程载体吗?为什么?提示:基因工程中作为载体使用的DNA分子很多都是质粒(plasmid),即独立于细菌拟核染色体DNA之外的一种可以自我复制、双链闭环的裸露的DNA分子。是否任何质粒都可以作为基因工程载体使用呢?不是,作为基因工程使用的载体必需满足以下条件:思考与探究P7第32页/共51页4、DNA连接酶有连接单链DNA的本领吗?

迄今为止,所发现的DNA连接酶都不具有连接单链DNA的能力,至于原因,现在还不清楚,也许将来会发现可以连接单链DNA的酶。思考与探究P7第33页/共51页1.在基因工程中,切割运载体和含有目的基因的DNA片段,需使用()同种限制酶B.两种限制酶同种连接酶D.两种连接酶A课堂练习第34页/共51页2.不属于质粒被选为基因运载体的理由是

A、能复制()

B、有多个限制酶切点

C、具有标记基因

D、它是环状DNAD课堂练习第35页/共51页3.以下说法正确的是()

A、所有的限制酶只能识别一种特定的核苷酸序列

B、质粒是基因工程中唯一的运载体

C、运载体必须具备的条件之一是:具有多个限制酶切点,以便与外源基因连接

D、基因控制的性状都能在后代表现出来C课堂练习第36页/共51页再见第37页/共51页基础理论和技术发展催生了基因工程科技探索之路早期基础理论达尔文提出生物进化论第38页/共51页基础理论和技术发展催生了基因工程科技探索之路早期基础理论孟德尔提出基因的分离定律和自由组合定律第39页/共51页基础理论和技术发展催生了基因工程科技探索之路早期基础理论

摩尔根证明基因在染色体上,并提出基因的连锁互换定律。第40页/共51页基础理论和技术发展催生了基因工程科技探索之路后期基础理论

艾弗里证明DNA是遗传物质,DNA可从一种生物个体转移到另一种生物个体。第41页/共51页基础理论和技术发展催生了基因工程科技探索之路后期基础理论

沃森、克里克提出DNA的双螺旋结构模型。第42页/共51页基础理论和技术发展催生了基因工程科技探索之路后期基础理论梅塞尔松、斯塔尔证明DNA的半保留复制第43页/共51页基础理论和技术发展催生了基因工程科技探索之路后期基础理论克里克等提出中心法则DNARNA蛋白质转录翻译逆转录复制第44页/共51页基础理论和技术发展催生了基因工程科技探索之路后期基础理论

1963年尼伦伯格和马太破译编码氨基酸的遗传密码,1966年霍拉纳用实验加以证明。第45页/共51页基础理论和技术发展催生了基因工程科技探索之路1)基因转移载体的发现2)工具酶的发现3)DNA合成和测序技术的发明4)DNA体外重组的实现5)重组DNA表达实验的成功

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论