下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海民办新高级中学2022-2023学年高一数学理联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知函数,若有四个不同的正数满足(为常数),且,,则的值为(
)
A.10
B.12
C.20
D.12或20参考答案:D略2.若偶函数f(x)在(﹣∞,0)内单调递减,则不等式f(﹣2)<f(lgx)的解集是(
)A.(0,100) B.(,100)C.(,+∞) D.(0,)∪(100,+∞)参考答案:D【考点】奇偶性与单调性的综合.【专题】函数的性质及应用.【分析】根据函数奇偶性和单调性之间的关系,将不等式进行转化即可.【解答】解:若偶函数f(x)在(﹣∞,0)内单调递减,则函数f(x)在(0,+∞)内单调递增,则不等式f(﹣2)<f(lgx)等价为f(2)<f(|lgx|),即|lgx|>2,即lgx>2或lgx<﹣2,即x>100或0<x<,故选:D【点评】本题主要考查不等式的求解,根据函数的奇偶性和单调性的关系将不等式进行等价转化是解决本题的关键.3.在三棱锥S﹣ABC中,已知SA=BC=2,SB=AC=,SC=AB=,则此三棱锥的外接球的表面积为()A.2π B.2π C.6π D.12π参考答案:C【考点】球的体积和表面积.【分析】构造长方体,使得面上的对角线长分别为2,,,则长方体的对角线长等于三棱锥S﹣ABC外接球的直径,即可求出三棱锥S﹣ABC外接球的表面积.【解答】解:∵三棱锥S﹣ABC中,SA=BC=2,SB=AC=,SC=AB=,∴构造长方体,使得面上的对角线长分别为2,,,则长方体的对角线长等于三棱锥S﹣ABC外接球的直径.设长方体的棱长分别为x,y,z,则x2+y2=4,y2+z2=3,x2+z2=5,∴x2+y2+z2=6∴三棱锥S﹣ABC外接球的直径为,∴三棱锥S﹣ABC外接球的表面积为=6π.故选:C.4.为了得到函数y=cos(x+)的图象,只需把余弦曲线y=cosx上的所有的点
(
)A.向左平移个单位长度
B.向右平移个单位长度C.向左平移个单位长度
D.向右平移个单位长度参考答案:A略5.3分)若α的终边与单位圆交于点(,﹣),则cosα=() A. B. ﹣ C. D. ﹣参考答案:A考点: 任意角的三角函数的定义.专题: 三角函数的求值.分析: 由条件利用任意角的三角函数的定义,求得cosα的值.解答: 由题意可得,x=,y=﹣,r==1,∴cosα==,故选:A.点评: 本题主要考查任意角的三角函数的定义,属于基础题.6.sin75°cos30°﹣sin15°sin150°的值等于(
)A.1 B. C. D.参考答案:C【考点】两角和与差的正弦函数.【专题】函数思想;转化法;函数的性质及应用;三角函数的求值.【分析】由诱导公式和两角和与差的三角形函数化简可得.【解答】解:由三角函数公式化简可得sin75°cos30°﹣sin15°sin150°=sin(90°﹣15°)cos30°﹣sin15°sin(180°﹣30°)=cos15°cos30°﹣sin15°sin30°=cos(15°+30°)=cos45°=,故选:C.【点评】本题考查两角和与差的正弦函数,涉及诱导公式的应用,属基础题.7.若则.
.
.
.参考答案:C8.函数f(x)=ln|x﹣1|+2cosπx(﹣2≤x≤4)的所有零点之和等于()A.2 B.4 C.6 D.8参考答案:C【考点】根的存在性及根的个数判断;函数的图象.【分析】函数f(x)=ln|x﹣1|+2cosπx的零点,即为函数f(x)=2cosπx与函数g(x)=ln|x﹣1|的图象交点的横坐标,由图象变化的法则和余弦函数的特点作出函数的图象,由对称性可得答案.【解答】解:f(x)=ln|x﹣1|+2cosπx的零点,即为函数f(x)=﹣2cosπx与函数g(x)=ln|x﹣1|的图象交点的横坐标,由图象变化的法则可知:y=ln|x﹣1|的图象作关于y轴的对称后和原来的一起构成y=ln|x|的图象,在向右平移1个单位得到y=ln|x﹣1|的图象又f(x)=﹣2cosπx的周期为2,如图所示:两图象都关于直线x=1对称,且共有A,B,C,D,E,F,6个交点,由中点坐标公式可得:xA+xF=2,xB+xE=2,xC+xD=2,故所有交点的横坐标之和为6,故选:C.【点评】本题考查函数图象的作法,熟练作出函数的图象是解决问题的关键,属中档题.9.的值为
(
)A.
B.
C.
D.参考答案:B10.(5分)设函数f(x)=3x2﹣1,则f(a)﹣f(﹣a)的值是() A. 0 B. 3a2﹣1 C. 6a2﹣2 D. 6a2参考答案:A考点: 函数的值.专题: 函数的性质及应用.分析: 直接利用函数的解析式求解函数值即可.解答: 函数f(x)=3x2﹣1,则f(a)﹣f(﹣a)=3a2﹣1﹣(3(﹣a)2﹣1)=0.故选:A.点评: 本题考查函数值的求法,基本知识的考查.二、填空题:本大题共7小题,每小题4分,共28分11.△ABC中,,则=
▲
.参考答案:1612.函数y=的定义域是_______________.参考答案:略13.设集合A={1,2},则满足A∪B={1,2,3}的集合B的个数是________.参考答案:414.方程9x﹣6?3x﹣7=0的解是
.参考答案:x=log37【考点】函数与方程的综合运用;一元二次不等式的解法.【专题】计算题;整体思想.【分析】把3x看做一个整体,得到关于它的一元二次方程求出解,利用对数定义得到x的解.【解答】解:把3x看做一个整体,(3x)2﹣6?3x﹣7=0;可得3x=7或3x=﹣1(舍去),∴x=log37.故答案为x=log37【点评】考查学生整体代换的数学思想,以及对数函数定义的理解能力.函数与方程的综合运用能力.15.若,则___▲___.参考答案:110由题意得.
16.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π,x∈R)在一个周期内的图象如图所示,则函数的解析式为.直线y=与函数y=f(x)(x∈R)图象的所有交点的坐标为..参考答案:f(x)=2sin(x+).(+4kπ,)或(+4kπ,)(k∈Z)【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】由函数f(x)=Asin(ωx+φ)的图象可知A=2,T=4π,从而可求ω,再由ω×+φ=+2kπ可求得φ,从而可得答案.然后解方程2sin(x+)=,结合正弦函数的图象可得x=x=+4kπ或+4kπ(k∈Z),由此即可得到直线y=与函数f(x)图象的所有交点的坐标.【解答】解:∵f(x)=Asin(ωx+φ)(A>0,ω>0,x∈R),∴A=2,周期T==﹣(﹣)=4π,∴ω=.∴f(x)=2sin(x+φ),又f(﹣)=2sin(×(﹣)+φ)=0,∴φ﹣=kπ,k∈Z,|φ|<π,∴φ=.∴f(x)=2sin(x+).当f(x)=时,即2sin(x+)=,可得sin(x+)=,∴x+=+2kπ或x+=+2kπ(k∈Z),可得x=+4kπ或+4kπ(k∈Z)由此可得,直线y=与函数f(x)图象的所有交点的坐标为:(+4kπ,)或(+4kπ,)(k∈Z).故答案为:f(x)=2sin(x+),(+4kπ,)或(+4kπ,)(k∈Z).17.平面向量中,若,=1,且,则向量=____。参考答案:
解析:方向相同,三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(10分)已知均为锐角,,求的值.参考答案:解:由已知得
,.∵且α、β都是锐角,∴.∴
又,∴.
略19.市内电话费是这样规定的,每打一次电话不超过3分钟付电话费0.18元,超过3分钟而不超过6分钟的付电话费0.36元,依次类推,每次打电话分钟应付话费y元,写出函数解析式并画出函数图象.参考答案:略20.如图所示,△ABC是边长为1的正三角形,点P1,P2,P3四等分线段BC.(Ⅰ)求的值;(Ⅱ)若点Q是线段AP3上一点,且,求实数m的值.参考答案:(Ⅰ)(Ⅱ)【分析】(Ⅰ)以作为基底,表示出,然后利用数量积的运算法则计算即可求出;(Ⅱ)由平面向量数量积的运算及其运算可得:设,又,所以,解得,得解.【详解】(Ⅰ)由题意得,则(Ⅱ)因为点Q是线段上一点,所以设,又,所以,故,解得,因此所求实数m的值为.【点睛】本题主要考查了平面向量的线性运算以及数量积的运算以及平面向量基本定理的应用,属于中档题.21.上海某学校要从艺术节活动中所产生的4名书法比赛一等奖的同学和2名绘画比赛一等奖的同学中选出2名志愿者,参加即将在上海举行的世博会的志愿服务工作.(1)求选出的两名志愿者都是获得书法比赛一等奖的同学的概率;(2)求选出的两名志愿者中一名是获得书法比赛一等奖,另一名是获得绘画比赛一等奖的同学的概率.参考答案:解:把4名获书法比赛一等奖的同学编号为1,2,3,4,2名获绘画比赛一等奖的同学编号为5,6.从6名同学中任选两名的所有可能结果如下:(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15个………………4分
(1)从6名同学中任选两名,都是书法比赛一等奖的所有可能是:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6个.
………6分∴选出的两名志愿者都是书法比赛一等奖的概率
……………8分(2)从6名同学中任选两名,一名是书法比赛一等奖,另一名是绘画比赛一等奖的所有可能是:(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),共8个.…………10分∴选出的两名志愿者一名是书法比赛一等奖,另一名是绘画比赛一等奖的概率是
22.(本小题满分12分)两个重要城市之间人员交流频繁,为了缓解交通压力,特修一条专用铁路,用一列火车作为交通车.已知该车每次拖4节车厢,一日能来回16次,如果每次拖7节车厢,则每日能来回10次.(1)若每日来回的次数是车头每次拖挂车厢节数的一次函数,求此一次函数解析式;(2)在(1)的条件下,每节车厢能载乘客110人.问这列火车每天来回多少次才能使运营人数最多?并求出每天最多运营人数.
参考答案:解:(1)设每日来回次,每次挂节车厢,由题意
……………1分由已知可得方程组:
…………3分解得:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东省广州三校2025届高三下学期联合考试英语试题含解析
- 2025届江苏省南通市如东县、徐州市丰县高考数学五模试卷含解析
- 上海市黄浦区大同中学2025届高考数学一模试卷含解析
- 股份质押借款合同模板示例
- 馒头原料采购销售合作合同
- 货物采购合同稳定
- 场地服务合同协议书范本
- 2024年度艺人经纪合同要点
- 竞拍的土地与实际面积不符申请解除合同申请模板
- 交通安全行走安全
- 建筑施工与组织(2)实践大作业:单位工程施工组织设计
- 微观经济学智慧树知到答案章节测试2023年山东大学(威海)
- 桥梁工程智慧树知到答案章节测试2023年广州大学
- 科学认识天气智慧树知到答案章节测试2023年中国海洋大学
- 家居风格分类说明PPT讲座
- 高标准农田施工合同
- J.P. 摩根-全球电气设备行业-自动化产业:摩根大通系统集成商调查-2021.5.20-58正式版
- GB/T 28035-2011软件系统验收规范
- 介绍北京英文
- 医生、护士工作服技术参数要求
- GB 29518-2013柴油发动机氮氧化物还原剂尿素水溶液(AUS 32)
评论
0/150
提交评论