上海张江中学2021-2022学年高二数学理模拟试题含解析_第1页
上海张江中学2021-2022学年高二数学理模拟试题含解析_第2页
上海张江中学2021-2022学年高二数学理模拟试题含解析_第3页
上海张江中学2021-2022学年高二数学理模拟试题含解析_第4页
上海张江中学2021-2022学年高二数学理模拟试题含解析_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海张江中学2021-2022学年高二数学理模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知=(1,﹣3,λ),=(2,4,﹣5),若⊥,则λ=()A.﹣4 B.﹣2 C.2 D.3参考答案:B【考点】向量语言表述线线的垂直、平行关系.【分析】由题意可得=(1,﹣3,λ),=(2,4,﹣5),并且⊥,所以结合向量坐标的数量积表达式可得2﹣12﹣5λ=0,进而求出答案.【解答】解:因为=(1,﹣3,λ),=(2,4,﹣5),并且⊥,所以2﹣12﹣5λ=0,解得:λ=﹣2.故选B.2.如图,在长方体ABCD﹣A1B1C1D1中,AB=BC=2,AA1=1,则BC1与平面BB1D1D所成角的正弦值为(

)A. B. C. D.参考答案:D【考点】直线与平面所成的角.【专题】计算题.【分析】由题意,由于图形中已经出现了两两垂直的三条直线所以可以利用空间向量的方法求解直线与平面所成的夹角.【解答】解:以D点为坐标原点,以DA、DC、DD1所在的直线为x轴、y轴、z轴,建立空间直角坐标系(图略),则A(2,0,0),B(2,2,0),C(0,2,0),C1(0,2,1)∴=(﹣2,0,1),=(﹣2,2,0),且为平面BB1D1D的一个法向量.∴cos<,>═=.∴BC1与平面BB1D1D所成角的正弦值为故答案为D.【点评】此题重点考查了利用空间向量,抓住直线与平面所成的角与该直线的方向向量与平面的法向量的夹角之间的关系这一利用向量方法解决了抽象的立体几何问题.3.已知数列是等差数列,其前项和为,若,且,则(

)(A)

(B)

(C)

(D)参考答案:C4.设某几何体的三视图如下图所示,则该几何体的体积为(

) A. B. C. D.参考答案:A5.若直线与直线平行,则实数的值为

)A.

B.1

C.1或

D.

参考答案:A略6.已知椭圆的一个焦点为,若椭圆上存在点,满足以椭圆短轴为直径的圆与线段相切于的中点,则该椭圆的离心率为(

)A.

B.

C.

D.

参考答案:A略7.一个空间几何体的三视图如图所示,该几何体的体积为(

)(A)

(B)

(C)

(D)参考答案:B8.已知,由不等式可以推广为A.

B.

C.

D.参考答案:B略9.如图是判断闰年的流程图,以下年份是闰年的为(

)A.1995年

B.2000年

C.2100年

D.2005年

参考答案:B10.五个工程队承建某项工程的五个不同的子项目,每个工程队承建1项,其中甲工程队不能承建1号子项目,则不同的承建方案共有(

)A.种

B.种

C.种

D.种参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.函数的最小正周期为_____

参考答案:12.在平面直角坐标系中,已知点、,是平面内一动点,直线、的斜率之积为.则动点的轨迹的方程

。参考答案:()13.设双曲线﹣=1(0<b<a)的半焦距为c,直线l经过双曲线的右顶点和虚轴的上端点.已知原点到直线l的距离为c,则双曲线的离心率为.参考答案:【考点】双曲线的简单性质.【分析】写出直线方程,利用点到直线的距离公式列出方程,求解双曲线的离心率即可.【解答】解:双曲线﹣=1(0<b<a)的半焦距为c,直线l经过双曲线的右顶点和虚轴的上端点.可得直线方程为:bx+ay=ab.原点到直线l的距离为c,可得:=,化简可得16a2(c2﹣a2)=3c4,即:16e2﹣16=3e4,e>1解得e=.故答案为:.【点评】本题考查双曲线的简单性质的应用,考查计算能力.14.不等式组的解集为__________________。参考答案:解析:15.执行下边的程序框图,若,则输出的_________。

参考答案:16.命题“”的否定是___________参考答案:略17.

参考答案:1三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在直角坐标系中,以原点为极点,轴的正半轴为极轴,建立极坐标系.已知曲线:(为参数),:(为参数).(1)化,的方程为普通方程,并说明它们分别表示什么曲线;(2)若上的点对应的参数为,为上的动点,求线段的中点到直线距离的最小值.参考答案:(Ⅰ)为圆心是,半径是的圆为中心在坐标原点,焦点在轴上,长半轴长是,短半轴长是的椭圆.(Ⅱ)当时,,设则,为直线,到的距离从而当时,取得最小值19.(本小题满分9分)已知函数.(Ⅰ)求的最小正周期;(Ⅱ)求在区间上的最大值和最小值.参考答案:解:(Ⅰ)…………2分

.…………………3分所以的最小正周期为.………………4分(Ⅱ)因为,所以.…………………5分所以.………7分所以.即的最大值为,最小值为.…………………9分20.(12分)某校从参加高二年级期末考试的学生中抽出60名学生,将其成绩(均为整数)分成六段,[40,50),[50,60),…[90,100]后画出如下图的频率分布直方图,观察图形,回答下列问题:(1)求第四小组的频率,并补全这个频率分布直方图;(2)估计这次考试的合格率(60分及60分以上为合格);(3)把90分以上(包括90分)视为成绩优秀,那么从成绩是60分以上(包括60分)的学生中选一人,求此人成绩优秀的概率.

参考答案:(1)因为各组的频率和等于1,故第四组的频率:f4=1﹣(0.025+0.01×52+0.01+0.005)×10=0.3…(2分)直方图如图所示

…(4分)(2)依题意,60及以上的分数所在的第三、四、五、六组,频率和为(0.015+0.03+0.025+0.005)*10=0.75所以,抽样学生成绩的合格率是75%.

…(8分)(3)[60,70),[70,80),[80,90),[90,100]”的人数是9,18,15,3.所以从成绩是(60分)以上(包括60分)的学生中选一人,该生是优秀学生的概率是

…(12分)21.(本题满分12分)如图,在长方体中,为中点.(1)求证:;(2)在棱上是否存在一点,使得平面若存在,求的长;若不存在,说明理由;(3)若二面角的大小为,求的长.参考答案:(1)以点A为原点建立空间直角坐标系,设,,故(2)假设在棱上存在一点,使得平面,则设平面的法向量为,则有,取,可得,要使平面,只要,又平面,存在点使平面,此时.(3)连接,由长方体,得,,由(1)知,故平面.是平面的法向量,而,则二面角是,所以,即22.本题满分10分).

在中,是三角形的三内角,是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论