




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市西南位育中学2022年高一数学文联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.函数的定义域是(
)A.(0,2)
B.[0,2]
C.[0,2)
D.(0,2]参考答案:D2.若等比数列{an}的前n项和,则a等于
(
)A.3
B.2
C.
D.参考答案:C3.已知为角终边上一点,且,则(
)A. B. C. D.参考答案:B【分析】由可得,借助三角函数定义可得m值与.【详解】∵∴,解得又为角终边上一点,∴,∴∴故选:B【点睛】本题主要考查任意角的三角函数的定义,两角和正切公式,属于基础题.4.在平面直角坐标系中,角α的终边经过点(﹣,),则sinα的值为()A. B.﹣ C.﹣ D.参考答案:D【考点】任意角的三角函数的定义.【分析】直接利用任意角的三角函数,求解即可.【解答】解:角α的终边经过点(﹣,),可得r=,则sinα==.故选D.5.由小到大排列的一组数据:,其中每个数据都小于,则样本,的中位数可以表示为(
)A.
B.
C.
D.参考答案:C6.定义在R上的偶函数满足,且在[-3,-2]上是减函数.若是锐角三角形的两内角,则有(
)A.
B.C.
D.参考答案:A7.某企业的生产总值连续两年持续增加,第一年的增长率为,第二年的增长率为,则这两年该企业生产总值的年均增长率为().A.B.C. D.参考答案:D解:设该企业生产总值的年增长率为,则,解得:.故选:.8.下列函数中与函数y=x相等的函数是(
)A. B.y= C. D.y=log22x参考答案:D【考点】判断两个函数是否为同一函数.【专题】函数的性质及应用.【分析】判断函数相等,先求出每个函数的定义域,然后判断与y=x的定义域是否相同,然后再判断解析式是否相同或可以化成相同的情况,即对应关系是否相同y=|x|.【解答】解:函数y=x的定义域为R,对应关系为y=x.对于A,函数y=的定义域为[0,+∞),故与y=x不是相同函数,故A错误;对于B,函数解析式可化为y=|x|,所以对应关系不同,故B错误;对于C.定义域为(0,+∞),故C错误;对于D,易知函数,该函数的定义域为R,所以该函数与y=x相同.故选D.【点评】本题考查了函数相等的概念,主要是从定义域、对应关系两个方面来考虑.9.无论m取何实数,直线恒过一定点,则该定点坐标为(
)A.(-2,1) B.(-2,-1) C.(2,1) D.(2,-1)参考答案:A【分析】通过整理直线的形式,可求得所过的定点.【详解】直线可整理为,当,解得,无论为何值,直线总过定点.故选A.【点睛】本题考查了直线过定点问题,属于基础题型.10.若点P在圆上运动,,则PQ的最小值为(
)A. B. C. D.参考答案:B【分析】由圆的方程求得圆心和半径;根据点坐标可得其轨迹为一条直线,则所求的最小值即为圆心到直线的距离减去半径,利用点到直线距离公式求得距离后,代入可得结果.【详解】由圆的方程得:圆心坐标,半径
点轨迹为:,即圆心到直线距离:本题正确选项:【点睛】本题考查圆上的点到直线上的点的距离的最小值的求解问题,关键是能够通过点的坐标得到轨迹方程.二、填空题:本大题共7小题,每小题4分,共28分11.已知正四棱台的上下底面边长分别为2,4,高为2,则其斜高为
。参考答案:略12.函数f(x)=2x|log0.5x|﹣1的零点个数为.参考答案:2【考点】根的存在性及根的个数判断.【分析】函数f(x)=2x|log0.5x|﹣1的零点个数,即方程2x|log0.5x|﹣1=0根个数,即方程|log0.5x|=()x根个数,即函数y=|log0.5x|与y=()x图象交点的个数,画出函数图象,数形结合,可得答案.【解答】解:函数f(x)=2x|log0.5x|﹣1的零点个数,即方程2x|log0.5x|﹣1=0根个数,即方程|log0.5x|=()x根个数,即函数y=|log0.5x|与y=()x图象交点的个数,在同一坐标系中画出函数y=|log0.5x|与y=()x图象,如下图所示:由图可得:函数y=|log0.5x|与y=()x图象有2个交点,故函数f(x)=2x|log0.5x|﹣1的零点有2个,故答案为:213.已知幂函数y=f(x)的图象过点(2,),则f(9)=
.参考答案:3【考点】幂函数的单调性、奇偶性及其应用.【专题】计算题.【分析】先由幂函数的定义用待定系数法设出其解析式,代入点的坐标,求出幂函数的解析式,再求f(16)的值【解答】解:由题意令y=f(x)=xa,由于图象过点(2,),得=2a,a=∴y=f(x)=∴f(9)=3.故答案为:3.【点评】本题考查幂函数的单调性、奇偶性及其应用,解题的关键是熟练掌握幂函数的性质,能根据幂函数的性质求其解析式,求函数值.14.若△ABC内切圆半径为r,三边长为a,b,c,则△ABC的面积,根据类比思想,若四面体内切球半径为R,四个面的面积为,,,,则四面体的体积为
参考答案:根据类比思想,内切圆类比四面体内切球,三边长类比为四个面的面积,因此四面体的体积为
15.已知函数,若对任意都有()成立,则的最小值为__________.参考答案:4π【分析】根据和的取值特点,判断出两个值都是最值,然后根据图象去确定最小值.【详解】因为对任意成立,所以取最小值,取最大值;取最小值时,与必为同一周期内的最小值和最大值的对应的,则,且,故.【点睛】任何一个函数,若有对任何定义域成立,此时必有:,.16.已知点,,,则的坐标为
.参考答案:略17.下面程序表示的函数解析式是
.参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(12分)已知数列{an}是等差数列,且a1=2,a1+a2+a3=12.(1)求数列{an}的通项公式;(2)令bn=an?3n,求数列{bn}的前n项和Sn.参考答案:【考点】数列的求和;等差数列的通项公式.【分析】(1)由数列{an}是等差数列,且a1=2,a1+a2+a3=12,利用等差数列的通项公式先求出d=2,由此能求出数列{an}的通项公式.(2)由an=2n,知bn=an?3n=2n?3n,所以Sn=2×3+4×32+6×33+…+2(n﹣1)×3n﹣1+2n×3n,再由错位相减法能够求出数列{bn}的前n项和Sn.【解答】解:(1)∵数列{an}是等差数列,且a1=2,a1+a2+a3=12,∴2+2+d+2+2d=12,解得d=2,∴an=2+(n﹣1)×2=2n.(2)∵an=2n,∴bn=an?3n=2n?3n,∴Sn=2×3+4×32+6×33+…+2(n﹣1)×3n﹣1+2n×3n,①3Sn=2×32+4×33+6×34+…+2(n﹣1)×3n+2n×3n+1,②①﹣②得﹣2Sn=6+2×32+2×33+2×34+…+2×3n﹣2n×3n+1=2×﹣2n×3n+1=3n+1﹣2n×3n+1﹣3=(1﹣2n)×3n+1﹣3∴Sn=+.【点评】本题考查数列的通项公式的求法和数列前n项和的求法,综合性强,难度大,易出错.解题时要认真审题,注意挖掘题设中的隐含条件,合理地运用错位相减法进行求和.19.(本题满分12分)(Ⅰ)化简;.;(Ⅱ)已知为第二象限角,化简.参考答案:(Ⅰ)原式===
……6分(Ⅱ)解:原式=
……6分20.在等差数列{an}中,a10=30,a20=50.(1)求数列{an}的通项an;(2)令bn=2,证明数列{bn}为等比数列;(3)求数列{(2n﹣1)bn}的前n项和Tn.参考答案:【考点】8E:数列的求和.【分析】(1)等差数列{an}中,由a10=30,a20=50.解得a1=12,d=2,由此能求出数列{an}的通项an.(2)由an=2n+10,知bn=═22n=4n,由此能够证明数列{bn}是等比数列.(3)(2n﹣1)bn=(2n﹣1)4n,由此利用错位相减法能求出数列{(2n﹣1)bn}的前n项和Tn.【解答】解:(1)设等差数列{an}的首项为a1,公差为d,由an=a1+(n﹣1)d,a10=30,a20=50,得,解得.∴an=12+2(n﹣1)=2n+10;数列{an}的通项an=2n+10;(2)证明:∵an=2n+10,∴bn==22n=4n,∴∴==4,∴数列{bn}是以首项b1=4,公比为4的等比数列.(3)∵(2n﹣1)bn=(2n﹣1)4n,∴Tn=1?4+3?42+…+(2n﹣1)4n,①4Tn=1?42+3?43+…+(2n﹣3)4n+(2n﹣1)4n+1,②①﹣②,得﹣3Tn=4+2×42+…+2×4n﹣(2n﹣1)4n+1,=﹣4﹣(2n﹣1)4n+1,=(4n+1﹣4)﹣4﹣(2n﹣1)4n+1,=×4n+1﹣,Tn=×4n+1+,数列{(2n﹣1)bn}的前n项和Tn,Tn=×4n+1+.【点评】本题考查数列的通项公式的求法,考查等比数列的证明,考查数列的前n项和的求法.解题时要认真审题,仔细解答,注意错位相减法的合理运用,属于中档题.21.(本小题满分12
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 环境监测数据传输与处理技术考核试卷
- 3-5译码器1电子课件教学版
- 体育场地设施安装的残疾人辅助设施考核试卷
- 渔业技术引进考核试卷
- 纸板容器技术人才发展考核试卷
- 渔业水域生态平衡与保护措施考核试卷
- 灯具制造的数字化生产线考核试卷
- 炼铁废气回收与利用技术应用考核试卷
- 纤维原料的新型应用与创新技术考核试卷
- 下肢深静脉血栓的预防和护理 2
- 院感试题100题及答案
- 急性冠脉综合征诊断及治疗课件
- 吹小号的天鹅试题及答案
- 数据库开发 试题及答案
- GB/T 45434.3-2025中国标准时间第3部分:公报
- 2024年郑州工业应用技术学院单招职业适应性测试题库附答案
- 《发育生物学》课件第七章 三胚层与器官发生
- 知名企业防开裂防渗漏重点控制培训讲义PPT
- 便利店商品分类-参考
- 35KV高压开关柜买卖合同
- 戴德梁行商业地产招商合同解读
评论
0/150
提交评论