



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市闸北区第二中学2022-2023学年高一数学理下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.下列命题正确的是(
)
A.
B.
C.当且时,
D.参考答案:D略2.幂函数的图象过点,那么的值为
(
)A.
B.64
C.
D.参考答案:C3.已知全集U={1,2,3,4,5,6},A={2,4,6},B={1,2,5},则A∩(?UB)等于()A.{2} B.{4,6} C.{2,3,4,6} D.{1,2,4,5,6}参考答案:B【考点】交、并、补集的混合运算. 【专题】集合思想;数学模型法;集合. 【分析】直接由集合的运算性质得答案. 【解答】解:由全集U={1,2,3,4,5,6},A={2,4,6},B={1,2,5}, ∴?UB={3,4,6}. 则A∩(?UB)={2,4,6}∩{3,4,6}={4,6}. 故选:B. 【点评】本题考查了交、并、补集的混合运算,是基础题. 4.函数y=—3sinx+1的值域为()A.[-4,4]
B.[-3,3]
C.[-4,2]
D.[-4,1参考答案:C略5.已知直线ax﹣y+2a=0的倾斜角为,则a等于()A.1 B.﹣1 C. D.﹣参考答案:B【考点】I2:直线的倾斜角.【分析】求出直线的斜率,得到a=tan,求出a的值即可.【解答】解:由已知得a=tan=﹣1,故选:B.6.设集合,,若,则A.
B.
C.
D.参考答案:C7.一个偶函数定义在上,它在上的图象如右图,下列说法正确的是(
)A.这个函数仅有一个单调增区间B.这个函数有两个单调减区间C.这个函数在其定义域内有最大值是7D.这个函数在其定义域内有最小值是-7参考答案:C8.下面说法不正确的选项()A.函数的单调区间可以是函数的定义域B.函数的多个单调增区间的并集也是其单调增区间C.具有奇偶性的函数的定义域定关于原点对称D.关于原点对称的图象一定是奇函数的图象参考答案:B【考点】命题的真假判断与应用;函数的概念及其构成要素.【分析】函数函数单调区间,函数奇偶性的定义,逐一分析给定四个结论的正误,可得答案.【解答】解:函数的单调区间可以是函数的定义域,如一次函数和指数函数,故A正确;函数的多个单调增区间的并集可能不是其单调增区间,如正弦函数和正切函数,故B不正确;具有奇偶性的函数的定义域一定关于原点对称,故C正确;关于原点对称的图象一定是奇函数的图象,故D正确;故选:B9.(本题满分12分)已知过点M(-3,-3)的直线被圆所截得的弦长为,求直线的方程.参考答案:解:将圆的方程写成标准形式,得所以,圆心的坐标是(0,-2),半径长为5.因为直线被圆所截得的弦长是,所以弦心距为即圆心到所求直线的距离为依题意设所求直线的方程为,因此所以解得故所求的直线方程有两条,它们的方程分别为略10.关于幂函数的下列结论,其中正确的是(
)A
幂函数的图像都过(0,0)
B
幂函数的图像不过第四象限C
幂函数为奇函数或偶函数
D
幂函数的图像一定经过两个象限参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.在区间内至少存在一个实数,使,则实数的限值范围是=
.参考答案:12.设函数=则的值为____________.参考答案:4略13.已知函数的图象与为常数)的图象相交的相邻两交点间的距离为,则参考答案:略14.(5分)由直线2x+y﹣4=0上任意一点向圆(x+1)2+(y﹣1)2=1引切线,则切线长的最小值为 .参考答案:2考点: 圆的切线方程.专题: 直线与圆.分析: 利用切线和点到圆心的距离关系即可得到结论.解答: 圆心坐标C(﹣1,1),半径R=1,要使切线长|DA|最小,则只需要点D到圆心的距离最小,此时最小值为圆心C到直线的距离d==,此时|DA|==,故答案为:2点评: 本题考查切线长的最小值的求法,是中档题,解题时要认真审题,注意点到直线的距离公式的合理运用,利用数形结合是解决本题的关键.15.设向量与的夹角为,且,,则______________.参考答案:略16.已知函数f(x)=4x2-kx-8在〔5,20〕上具有单调性,则实数k的取值范围是
参考答案:略17.已知指数函数f(x)=ax(a>0,且a≠1)的图象经过点(3,8),则f(1)=
.参考答案:2【考点】指数函数的图象与性质.【分析】把点(3,8)代入指数函数y=ax即可得出f(x)的解析式,求出f(1)的值即可.【解答】解:∵指数函数y=ax的图象经过点(3,8),(a>0且a≠1),∴8=a3,解得a=2,故f(x)=2x,故f(1)=2,故答案为:2.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数f(x)是定义在R上的偶函数,且当x≤0时,f(x)=x2+2x.(1)现已画出函数f(x)在y轴左侧的图象,如图所示,请补出完整函数f(x)的图象,并根据图象写出函数f(x)的增区间;(2)写出函数f(x)的解析式和值域.参考答案:【考点】二次函数的图象;函数的值域;函数解析式的求解及常用方法;函数的单调性及单调区间.【专题】计算题;作图题.【分析】(1)因为函数为偶函数,故图象关于y轴对称,由此补出完整函数f(x)的图象即可,再由图象直接可写出f(x)的增区间.(2)可由图象利用待定系数法求出x>0时的解析式,也可利用偶函数求解析式,值域可从图形直接观察得到.【解答】解:(1)因为函数为偶函数,故图象关于y轴对称,补出完整函数图象如有图:所以f(x)的递增区间是(﹣1,0),(1,+∞).(2)设x>0,则﹣x<0,所以f(﹣x)=x2﹣2x,因为f(x)是定义在R上的偶函数,所以f(﹣x)=f(x),所以x>0时,f(x)=x2﹣2x,故f(x)的解析式为值域为{y|y≥﹣1}【点评】本题考查分段函数求解析式、作图,同时考查函数的函数的奇偶性和值域等性质.19.已知a,b,c为△ABC的三个内角的对边,向量=(2cosB,1),=(1﹣sinB,sin2B﹣1),⊥.(1)求∠B的大小;(2)若a=1,c=2,求b的值.参考答案:【考点】平面向量数量积的运算;正弦定理;余弦定理.【专题】计算题;对应思想;向量法;综合法;解三角形;平面向量及应用.【分析】(1)由便得到,进行数量积的坐标运算便可得到cosB=,从而得出B=;(2)根据余弦定理便有b2=a2+c2﹣2accosB,这样即可求出b的值.【解答】解:(1)∵;∴;即2cosB(1﹣sinB)+sin2B﹣1=2cosB﹣2sinBcosB+sin2B﹣1=2cosB﹣1=0;∴;又B∈(0,π);∴;(2)在△ABC中,;∴由余弦定理得,=1+4﹣2=3;∴.【点评】考查向量垂直的充要条件,向量数量积的坐标运算,二倍角的正弦公式,已知三角函数值求角,以及余弦定理.20.(1)若函数y=f(2x+1)的定义域为[1,2],求f(x)的定义域.w.w.w.k.s.5.u.c.o.m
(2)已知函数f(x)的定义域为[-,],求函数g(x)=f(3x)+f()的定义域.参考答案:解析:(1)f(2x+1)的定义域为[1,2]是指x的取值范围是[1,2],的定义域为[3,5]
(2)∵f(x)定义域是[-,]∴g(x)中的x须满足
w.w.w.k.s.5.u.c.o.m
∴g(x)的定义域为[-].21.写出命题“所有等比数列的前项和是(是公比)”的否定,并判断原命题否定的真假。参考答案:“有些等比数列的前项和不是(是公比)”。是真命题。解法一:当等比数列的公比时,等比数列的前项和
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年天津市安全员知识题库
- 重庆工程职业技术学院《朗读与讲故事指导》2023-2024学年第二学期期末试卷
- 西南民族大学《古生物学含实验》2023-2024学年第二学期期末试卷
- 南京农业大学《教育评价与测量》2023-2024学年第二学期期末试卷
- 哈尔滨剑桥学院《广告创意与策划》2023-2024学年第二学期期末试卷
- 广西体育高等专科学校《电磁场理论与光波导技术》2023-2024学年第二学期期末试卷
- 2025届河南省周口市西华县三校联考高三上学期一模历史试卷
- 赣南师范大学《幼儿园体育游戏》2023-2024学年第二学期期末试卷
- 江苏联合职业技术学院《分子生物学(英文)》2023-2024学年第二学期期末试卷
- 广州城建职业学院《销售管理》2023-2024学年第二学期期末试卷
- 2022年山东司法警官职业学院单招语文试题及答案解析
- 2023版北京协和医院重症医学科诊疗常规
- 仁爱版九年级英语下册课文翻译
- 钢网验收报告
- 防水补漏工程合同(合同版本)
- 铁路局中间站管理手册
- 监理日志表(标准模版)
- H3C-CAS虚拟化平台详细介绍
- 小学生韵母in、ing常见汉字与区分练习
- 药房品种类别及数量清单
- 大学生安全教育课件(ppt共41张)
评论
0/150
提交评论