版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省揭阳市古溪中学2021-2022学年高一数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知函数y=f(x)是(-1,1)上的偶函数,且在区间(-1,0)是单调递增的,则下列不等式中一定成立的是(
)A.f(sin)>f(cos)
B.
f(sin)>f(cos)
C.f(cos())>f(sin)
D.f(sin)>f(cos)参考答案:C略2.函数,则
的取值范围是(
)
A.
B.
C.
D.
参考答案:A3.函数f(x)=|x-1|的图象是()参考答案:B略4.如图,一个几何体的三视图是三个直角三角形,则该几何体的最长的棱长等于()A.2 B.3 C.3 D.9参考答案:B【考点】L!:由三视图求面积、体积.【分析】由三视图知该几何体是一个三棱锥,由三视图求出几何元素的长度、判断出线面的位置关系,由图判断出几何体的最长棱,由勾股定理求出即可.【解答】解:由三视图知几何体是一个三棱锥P﹣ABC,直观图如图所示:PC⊥平面ABC,PC=1,且AB=BC=2,AB⊥BC,∴AC=,∴该几何体的最长的棱是PA,且PA==3,故选:B.5.(
)A.
B.
C.2
D.4参考答案:D6.函数y=﹣xcosx的部分图象是()A.
B. C. D.参考答案:D【考点】函数的图象.【分析】由函数奇偶性的性质排除A,C,然后根据当x取无穷小的正数时,函数小于0得答案.【解答】解:函数y=﹣xcosx为奇函数,故排除A,C,又当x取无穷小的正数时,﹣x<0,cosx→1,则﹣xcosx<0,故选:D.7.如果函数在区间上是减少的,那么实数的取值范围是(
)A、
B、
C、
D、参考答案:A略8.某公司现有普通职员人,中级管理人员人,高级管理人员人,要从公司抽取个人进行身体健康检查,如果采用分层抽样的方法,其中高级管理人员仅抽到1人,那么的值为(
)A.1
B.3
C.16
D.20参考答案:D9.已知当时函数取得最小值,则(
)A.-5 B.5 C. D.参考答案:D【分析】先求出,,再求出,,再求,的值得解.【详解】,令,,则.由题意知,,所以,,即,,故,.所以,,所以.【点睛】本题主要考查三角恒等变换,考查三角求值,意在考查学生对这些知识的理解掌握水平和分析推理能力.10.命题“?x∈R,x3﹣x2+1≤0”的否定是()A.?x∈R,x3﹣x2+1≥0 B.?x∈R,x3﹣x2+1>0C.?x∈R,x3﹣x2+1≤0 D.?x∈R,x3﹣x2+1>0参考答案:B【分析】直接利用全称命题的否定解答即可.【详解】命题“?x∈R,x3﹣x2+1≤0”的否定是“?x∈R,x3﹣x2+1>0.故选:B【点睛】本题主要考查全称命题的否定,意在考查学生对这些知识的理解掌握水平.二、填空题:本大题共7小题,每小题4分,共28分11.圆x2+y2+2x-4y+1=0关于直线2ax-by+2=0对称(a,b∈R),则ab的最大值是
_______参考答案:12.函数f(x)=2sinωx(ω>0)在[0,]上单调递增,且在这个区间上的最大值是,则ω的值为.参考答案:
【考点】正弦函数的图象.【分析】由题意可得≤,且ω?=,由此求得ω的值.【解答】解:∵函数f(x)=2sinωx(ω>0)在[0,]上单调递增,∴≤.再根据在这个区间上f(x)的最大值是,可得ω?=,则ω=,故答案为:.13.把化为的形式即为_______________.
参考答案:14.等比数列中,若和是方程的两个根,则
参考答案:15.若函数是偶函数,则a=__________.参考答案:0因为函数是偶函数,所以x的一次项系数为0,即16.已知两正数x,y满足x+y=1,则z=(x+)(y+)的最小值为.参考答案:略17.在等差数列{an}中,已知前20项之和S-20=170,则a6+a9+a11+a16=
.参考答案:34三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)已知,,,,求的值
参考答案:
19.(本小题满分12分)设,当时,对应值的集合为.(1)求的值;(2)若,求该函数的最值.参考答案:(1)当时,即,则为其两根,由韦达定理知:所以,
所以.………6分(2)由(1)知:,因为,所以,当时,该函数取得最小值,……9分
又因为,所以当时,该函数取得最大值………12分20.已知函数,(1)用定义证明:在R上是单调减函数;(2)若是奇函数,求值;(3)在(2)的条件下,解不等式参考答案:(1)详见解析(2)(3)试题分析:(1)根据单调性定义,先任取定义域内两个数,作对应函数值的差,通分化为因式形式,根据指数函数单调性确定大小,确定对应因式符号,最后确定差的符号,根据单调性定义确定单调性(2)由奇函数性质得(3)利用函数奇偶性将不等式转化为两个函数值大小关系,再根据单调性,转化为对应自变量关系,最后解不等式求出解集考点:单调性定义,利用函数性质解不等式【方法点睛】判断函数单调性的常用方法:(1)定义法和导数法,注意证明函数单调性只能用定义法和导数法;(2)图象法,由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集:二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接;(3)利用函数单调性的基本性质,尤其是复合函数“同增异减”的原则,此时需先确定函数的单调性.21.设a为实数,函数f(x)=(x﹣a)2+|x﹣a|﹣a(a﹣1).(1)若f(0)≤1,求a的取值范围;(2)求f(x)在R上的单调区间(无需使用定义严格证明,但必须有一定的推理过程);(3)当a>2时,求函数g(x)=f(x)+|x|在R上的零点个数.参考答案:【考点】根的存在性及根的个数判断.【分析】(1)根据f(0)≤1列不等式,对a进行讨论解出a的范围;(2)根据二次函数的对称轴和开口方向判断单调区间;(3)写出g(x)的函数解析式,利用二次函数的性质判断g(x)的单调性,根据零点的存在性定理判断.【解答】解:(1)f(0)=a2+|a|﹣a2+a=|a|+a,因为f(0)≤1,所以|a|+a≤1,当a≤0时,0≤1,显然成立;当a>0,则有2a≤1,所以.所以.综上所述,a的取值范围是.(2),对于y=x2﹣(2a﹣1)x,其对称轴为,开口向上,所以f(x)在(a,+∞)上单调递增;
对于y=x2﹣(2a+1)x,其对称轴为,开口向上,所以f(x)在(﹣∞,a)上单调递减.综上所述,f(x)在(a,+∞)上单调递增,在(﹣∞,a)上单调递减.(3)g(x)=.∵y1=x2+(2﹣2a)x的对称轴为x=a﹣1,y2=x2﹣2ax+2a的对称轴为x=a,y3=x2﹣(2a+2)x+2a的对称轴为x=a+1,∴g(x)在(﹣∞,0)上单调递减,在(0,a)上单调递减,在(a,+∞)上单调递增.∵g(0)=2a>0,g(a)=a2+(2﹣2a)a=2a﹣a2=﹣(a﹣1)2+1,∵a>2,∴g(a)=﹣(a﹣1)2+1在(2,+∞)上单调递减,∴g(a)<g(2)=0.∴f(x)在(0,a)和(a,+∞)上各有一个零点.综上所述,当a>2时,g(x)=f(x)+|x|有两个零点.22.已知向量,,函数的图象过点,点与其相邻的最高点的距离为4.(1)求的单调递增区间;(2)计算;(3)设函数,试讨论函数在区间[0,3]上的零点个数.参考答案:(1)向量,,点为函数图象上的一个最高点,点与其相邻的最高点的距离为,,函数图象过点,,,,由,得,的单调增区间是.(2)由(1)知的周期为4,且,,而.(3),函数在区间[0,3]上的零点个数,即为函数的图象与直线在[0,3]上的交点个数.在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东科技学院《工程施工仿真》2023-2024学年第一学期期末试卷
- 广东金融学院《美术文化活动策划》2023-2024学年第一学期期末试卷
- 广东建设职业技术学院《室内设计基础》2023-2024学年第一学期期末试卷
- 广东环境保护工程职业学院《英语史》2023-2024学年第一学期期末试卷
- 旅客列车安全课件
- 广东财经大学《ISO14000环境管理体系》2023-2024学年第一学期期末试卷
- 小学生日常行为规范课件
- 赣南科技学院《机械制造基础A》2023-2024学年第一学期期末试卷
- 服务合同培训课件
- 甘孜职业学院《文学创作与实践》2023-2024学年第一学期期末试卷
- 2025年国务院发展研究中心信息中心招聘应届毕业生1人高频重点提升(共500题)附带答案详解
- 2024年公安机关理论考试题库500道及参考答案
- 2024年全国《国防和兵役》理论知识竞赛试题库与答案
- 特殊情况施工的技术措施
- 企业知识产权保护策略及实施方法研究报告
- 2024年07月11026经济学(本)期末试题答案
- 2024年中小企业股权融资合同3篇
- 2024年01月11289中国当代文学专题期末试题答案
- 2024年秋季生物教研组工作计划
- 《古兰》中文译文版
- 电气工程课程设计——车间动力及照明设计
评论
0/150
提交评论