2022年河南省郑州市巩义第二中学高三数学理期末试卷含解析_第1页
2022年河南省郑州市巩义第二中学高三数学理期末试卷含解析_第2页
2022年河南省郑州市巩义第二中学高三数学理期末试卷含解析_第3页
2022年河南省郑州市巩义第二中学高三数学理期末试卷含解析_第4页
2022年河南省郑州市巩义第二中学高三数学理期末试卷含解析_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年河南省郑州市巩义第二中学高三数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为(

)

A.

B.

C.

D.参考答案:答案:C解析:本小题主要考查等可能事件概率求解问题。依题要使取出的2张卡片上的数字之和为奇数,则取出的2张卡片上的数字必须一奇一偶,∴取出的2张卡片上的数字之和为奇数的概率2.方程在内A.有且仅有2个根

B.有且仅有4个根C.有且仅有6个根D.有无穷多个根参考答案:C3.已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为()A.

B.C.

D.参考答案:C4.已知某几何体的三视图如图所示,则该几何体的体积是()A.+π B.+2π C.2+π D.2+2π参考答案:C【考点】由三视图求面积、体积.【分析】由已知的三视图可得:该几何体是一个半圆柱与一个直三棱柱组合而成的几何体,计算出底面面积和高,代入柱体体积公式,可得答案.【解答】解:由三视图可知该几何体是由一个半圆柱与一个直三棱柱组合而成的几何体,∵圆柱的底面直径为2,高为2,棱柱的底面是边长为2的等边三角形,高为2,于是该几何体的体积为.故选:C5.设是虚数单位,则复数(1-i)2-等于

A.0

B.2

C.

D.参考答案:D(1-i)2-=-2i-=-2i-=-2i-2i=-4i.故选D.6.已知函数,如果且,则它的图象可能是

A

B

C

D参考答案:D7.已知函数f(x)=﹣x3+ax2+bx(a,b∈R)的图象如图所示,它与x轴相切于原点,且x轴与函数图象所围成区域(图中阴影部分)的面积为,则a的值为()A.0 B.1 C.﹣1 D.﹣2参考答案:C【考点】定积分.【专题】数形结合;转化思想;数形结合法;导数的概念及应用.【分析】由x=0是f(x)=0的一个极值点,可得f′(0)=0,求得b的值,确定出f(x)的解析式,由于阴影部分面积为,利用定积分求面积的方法列出关于a的方程求出a并判断a的取舍即可【解答】解:由f(x)=﹣x3+ax2+bx,得f′(x)=﹣3x2+2ax+b.∵x=0是原函数的一个极值点,∴f′(0)=b=0.∴f(x)=﹣x2(x﹣a),有∫a0(x3﹣ax2)dx=()|a0=0﹣+==,∴a=±1.函数f(x)与x轴的交点横坐标一个为0,另一个a,根据图形可知a<0,得a=﹣1.故选:C【点评】本题主要考查了定积分在求面积中的应用,以及定积分的运算法则,同时考查了计算能力和识图能力,属于中档题.8.设函数则(A)(B)(C)(D)参考答案:A,所以,选A.9.已知变量满足不等式组,则的最小值为A. B. C.3 D.4参考答案:A10.(5分)已知函数f(x)为奇函数,且当x>0时,,则f(﹣1)=()A.﹣2B.0C.1D.2参考答案:A【考点】:函数的值.【专题】:函数的性质及应用.【分析】:利用奇函数的性质,f(﹣1)=﹣f(1),即可求得答案.解:∵函数f(x)为奇函数,x>0时,f(x)=x2+,∴f(﹣1)=﹣f(1)=﹣2,故选A.【点评】:本题考查奇函数的性质,考查函数的求值,属于基础题.二、填空题:本大题共7小题,每小题4分,共28分11.当时,函数的最小值为

.参考答案:4【考点】三角函数的最值.【专题】计算题.【分析】先利用二倍角公式和同角三角函数的基本关系对函数解析式化简整理,然后利用基本不等式求得函数的最小值.【解答】解:==+≥4当且仅当4sin2x=cos2x时等号成立.故答案为;4【点评】本题主要考查了同角三角函数的基本关系的应用,二倍角化简求值,基本不等式的求最值.考查了基础知识的综合运用.12.若命题p:?x∈R,使x2+ax+1<0,则¬p:

.参考答案:?x∈R,使x2+ax+1≥0【考点】命题的否定.【分析】直接利用特称命题的否定是全称命题写出结果即可.【解答】解:因为特称命题的否定是全称命题,所以,命题p:?x∈R,使x2+ax+1<0,则¬p:?x∈R,使x2+ax+1≥0.故答案为:?x∈R,使x2+ax+1≥0.13.在中,,以点为一个焦点作一个椭圆,使这个椭圆的另一个焦点在边上,且这个椭圆过、两点,则这个椭圆的焦距长为_____________.参考答案:14.若(a﹣2i)i=b+i,其中a,b∈R,i为虚数单位,则a+b=

.参考答案:3【考点】复数相等的充要条件.【专题】计算题;转化思想.【分析】先化简,然后,根据复数相等的充要条件,实部与实部相等,虚部与虚部相等,求出a,b即可.【解答】解:(a﹣2i)i=b+i,化为:2+ai=b+i∴a=1,b=2.所以a+b=3故答案为:3【点评】本题考查复数相等的概念,考查计算能力,是基础题.15.圆被直线截得的弦长为,则=

.参考答案:16.已知θ为锐角,,则sinθ=

.参考答案:17.已知向量a、b不共线,若a-2b与3a+kb共线,则实数k=__________.参考答案:-6略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)已知等差数列{an}满足a2=0,a6+a8=-10(I)求数列{an}的通项公式;(II)求数列{an·3n-1}的前n项和.参考答案:(I)设等差数列{an}的公差为d,由已知条件可得解得故数列{an}的通项公式为an=2-n

………………5分

(II)设数列{an·3n-1}的前n项和为Sn,即

Sn=1·30+0·31-1·32-···+(3-n)3n-1+(2-n)3n3Sn=

1·31+0·32-1·33-···+(3-n)3n+(2-n)3n+1所以2Sn=30+31+32-···+3n-1+(2-n)3n所以Sn=综上,数列{an·3n-1}………………12分19.已知椭圆G:过点和点.(1)求椭圆G的方程;(2)设直线与椭圆G相交于不同的两点M,N,记线段MN的中点为P,是否存在实数m,使得?若存在,求出实数m;若不存在,请说明理由.参考答案:(1);(2)见解析【分析】(1)根据椭圆过点,代入即可求出,写出标准方程(2)假设存在,联立直线与椭圆方程,利用韦达定理可求弦MN中点,根据知,利用垂直直线斜率之间的关系可求出,结合直线与椭圆相交的条件,可知不存在.【详解】(1)椭圆:过点和点,所以,由,解得,所以椭圆:.(2)假设存在实数满足题设,由,得,因为直线与椭圆有两个交点,所以,即,设的中点为,,分别为点,的横坐标,则,从而,所以,因为,所以,所以,而,所以,即,与矛盾,因此,不存在这样的实数,使得.【点睛】本题主要考查了椭圆标准方程的求法,直线与椭圆的位置关系,涉及根与系数的关系,中点,垂直直线斜率的关系,属于中档题.20.命题“?a∈R,a2≥0”的否定为()A.?a∈R,a2<0 B.?a∈R,a2≥0 C.?a?R,a2≥0 D.?a∈R,a2<0参考答案:D【考点】命题的否定.【专题】计算题;规律型;对应思想;简易逻辑.【分析】直接利用全称命题的否定是特称命题写出结果即可.【解答】解:因为全称命题的否定是特称命题,所以,命题“?a∈R,a2≥0”的否定为?a∈R,a2<0.故选:D.【点评】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.21.设函数f(x)=|2x+1|﹣|x﹣4|.(1)解不等式f(x)>0;(2)若f(x)+3|x﹣4|>m对一切实数x均成立,求m的取值范围.参考答案:考点:绝对值不等式的解法;函数最值的应用.专题:计算题;压轴题;分类讨论.分析:(1)分类讨论,当x≥4时,当时,当时,分别求出不等式的解集,再把解集取交集.(2)利用绝对值的性质,求出f(x)+3|x﹣4|的最小值为9,故m<9.解答: 解:(1)当x≥4时f(x)=2x+1﹣(x﹣4)=x+5>0得x>﹣5,所以,x≥4时,不等式成立.当时,f(x)=2x+1+x﹣4=3x﹣3>0,得x>1,所以,1<x<4时,不等式成立.当时,f(x)=﹣x﹣5>0,得x<﹣5,所以,x<﹣5成立综上,原不等式的解集为:{x|x>1或x<﹣5}.(2)f(x)+3|x﹣4|=|2x+1|+2|x﹣4|≥|2x+1﹣(2x﹣8)|=9,当,所以,f(x)+3|x﹣4|的最小值为9,故m<9.点评:本题考查绝对值不等式的解法,求函数的最小值的方法,绝对值不等式的性质,体现了分类讨论的数学思想.22.设Sn是数列{an}的前n项和,已知a1=3,an+1=2Sn+3(n∈N)(I)求数列{an}的通项公式;(Ⅱ)令bn=(2n﹣1)an,求数列{bn}的前n项和Tn.参考答案:【考点】8E:数列的求和;8H:数列递推式.【分析】(I)利用递推关系与等比数列的通项公式即可得出;(II)利用“错位相减法”与等比数列的其前n项和公式即可得出.【解答】解:(I)∵an+1=2Sn+3,∴当n≥2时,an=2Sn﹣1+3,∴an+1﹣an=2(Sn﹣Sn﹣1)=2an,化为an+1=3an.∴数列{an}是等比数列,首项为3,公比为3.∴an=3n.(II)bn=(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论